dc.contributor.author |
Dimakis, AG |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:42:53Z |
|
dc.date.available |
2014-03-01T02:42:53Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
15206149 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31120 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-4644303606&partnerID=40&md5=ee65dfcb983cc4f245f6880201bb9d90 |
en |
dc.relation.uri |
http://cvsp.cs.ntua.gr/publications/confr/DimakisMaragos_ModelResonPhaseModulSelfSimil_ICASSP2004.pdf |
en |
dc.subject |
fractional brownian motion |
en |
dc.subject |
Generic Model |
en |
dc.subject |
Nonlinear Model |
en |
dc.subject |
Oscillations |
en |
dc.subject |
Phase Modulation |
en |
dc.subject |
Random Process |
en |
dc.subject |
self-similar process |
en |
dc.subject |
Stochastic Process |
en |
dc.subject |
Power Spectrum |
en |
dc.subject |
Time Varying |
en |
dc.subject.other |
Frational stable Levy motion (FSLM) |
en |
dc.subject.other |
Quartz crystals |
en |
dc.subject.other |
Self-similar processes |
en |
dc.subject.other |
Time varying frequency |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Atomic clocks |
en |
dc.subject.other |
Brownian movement |
en |
dc.subject.other |
Correlation methods |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Natural frequencies |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Time varying systems |
en |
dc.subject.other |
Phase modulation |
en |
dc.title |
Modeling resonances with phase modulated self-similar processes |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper we propose a nonlinear model for time-varying random resonances where the instantaneous phase (and frequency) of a sinusoidal oscillation is allowed to vary proportionally to a random process that belongs to the class of αα-stable self-similar stochastic processes. This is a general model that includes phase modulations by fractional Brownian motion or fractional stable Levy motion as special cases. We explore theoretically this random modulation model and derive analytically its autocorrelation and power spectrum. We also propose an algorithm to fit this model to arbitrary resonances with random phase modulation. Further, we apply the above ideas to some speech data and demon-strate that the model is suitable for fricative sounds. |
en |
heal.journalName |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
II877 |
en |
dc.identifier.epage |
II880 |
en |