HEAL DSpace

Non-feasible gradient projection recurrent neural network for equality constrained optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Barbarosou, M en
dc.contributor.author Maratos, NG en
dc.date.accessioned 2014-03-01T02:42:53Z
dc.date.available 2014-03-01T02:42:53Z
dc.date.issued 2004 en
dc.identifier.issn 10987576 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31126
dc.subject Constrained Optimization en
dc.subject Constrained Optimization Problem en
dc.subject Convex Optimization en
dc.subject Optimization Problem en
dc.subject Recurrent Neural Network en
dc.subject Satisfiability en
dc.subject Neural Network en
dc.subject.other Circuit realization en
dc.subject.other Constraint gradients en
dc.subject.other Equality constrained optimization en
dc.subject.other Orthogonal projection en
dc.subject.other Constraint theory en
dc.subject.other Convergence of numerical methods en
dc.subject.other Functions en
dc.subject.other Matrix algebra en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Quadratic programming en
dc.subject.other Set theory en
dc.subject.other Trajectories en
dc.subject.other Recurrent neural networks en
dc.title Non-feasible gradient projection recurrent neural network for equality constrained optimization en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IJCNN.2004.1380972 en
heal.identifier.secondary http://dx.doi.org/10.1109/IJCNN.2004.1380972 en
heal.publicationDate 2004 en
heal.abstract A recurrent neural network for equality constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a genetically non-feasible trajectory, satisfying the constraints only as t → ∞. Generalized convergence results are given which do not assume convexity of the optimization problems to be solved. Convergence in the usual sense is obtained for convex optimization problems. A circuit realization of the proposed architecture is given to indicate practical implementability of our neural network. Numerical results indicate that the proposed method is efficient and accurate. en
heal.journalName IEEE International Conference on Neural Networks - Conference Proceedings en
dc.identifier.doi 10.1109/IJCNN.2004.1380972 en
dc.identifier.volume 3 en
dc.identifier.spage 2251 en
dc.identifier.epage 2256 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής