dc.contributor.author |
Barbarosou, M |
en |
dc.contributor.author |
Maratos, NG |
en |
dc.date.accessioned |
2014-03-01T02:42:53Z |
|
dc.date.available |
2014-03-01T02:42:53Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
10987576 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31126 |
|
dc.subject |
Constrained Optimization |
en |
dc.subject |
Constrained Optimization Problem |
en |
dc.subject |
Convex Optimization |
en |
dc.subject |
Optimization Problem |
en |
dc.subject |
Recurrent Neural Network |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Circuit realization |
en |
dc.subject.other |
Constraint gradients |
en |
dc.subject.other |
Equality constrained optimization |
en |
dc.subject.other |
Orthogonal projection |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Quadratic programming |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Trajectories |
en |
dc.subject.other |
Recurrent neural networks |
en |
dc.title |
Non-feasible gradient projection recurrent neural network for equality constrained optimization |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IJCNN.2004.1380972 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IJCNN.2004.1380972 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A recurrent neural network for equality constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a genetically non-feasible trajectory, satisfying the constraints only as t → ∞. Generalized convergence results are given which do not assume convexity of the optimization problems to be solved. Convergence in the usual sense is obtained for convex optimization problems. A circuit realization of the proposed architecture is given to indicate practical implementability of our neural network. Numerical results indicate that the proposed method is efficient and accurate. |
en |
heal.journalName |
IEEE International Conference on Neural Networks - Conference Proceedings |
en |
dc.identifier.doi |
10.1109/IJCNN.2004.1380972 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.spage |
2251 |
en |
dc.identifier.epage |
2256 |
en |