dc.contributor.author |
Papageorgiou, EH |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:42:53Z |
|
dc.date.available |
2014-03-01T02:42:53Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0253-4142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31127 |
|
dc.subject |
Clarke subdifferential |
en |
dc.subject |
Homoclinic solution |
en |
dc.subject |
Locally Lipschitz function |
en |
dc.subject |
Non-smooth critical point theory |
en |
dc.subject |
Non-smooth Palais-Smale condition |
en |
dc.subject |
Ordinary vector p-Laplacian |
en |
dc.subject |
Poincaré-Wirtinger inequality |
en |
dc.subject |
Problem at resonance |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Clarke subdifferential |
en |
dc.subject.other |
Homoclinic solution |
en |
dc.subject.other |
Landesman-Lazer type condition |
en |
dc.subject.other |
Locally Lipschitz function |
en |
dc.subject.other |
Non-smooth critical point theory |
en |
dc.subject.other |
Non-smooth Palais-Smale condition |
en |
dc.subject.other |
Ordinary vectorp-Laplacian |
en |
dc.subject.other |
Problem at resonance |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Time varying systems |
en |
dc.title |
Non-linear second-order periodic systems with non-smooth potential |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/BF02830004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02830004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on the potential function. Then we establish the existence of non-trivial homoclinic (to zero) solutions. Our theorem appears to be the first such result (even for smooth problems) for systems monitored by the p-Laplacian. In the last section of the paper we examine the scalar non-linear and semilinear problem. Our approach uses a generalized Landesman-Lazer type condition which generalizes previous ones used in the literature. Also for the semilinear case the problem is at resonance at any eigenvalue. |
en |
heal.publisher |
INDIAN ACADEMY SCIENCES |
en |
heal.journalName |
Proceedings of the Indian Academy of Sciences: Mathematical Sciences |
en |
dc.identifier.doi |
10.1007/BF02830004 |
en |
dc.identifier.isi |
ISI:000223918400005 |
en |
dc.identifier.volume |
114 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
269 |
en |
dc.identifier.epage |
298 |
en |