HEAL DSpace

Robust, generalized, quick and efficient agglomerative clustering

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Wallace, M en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:42:57Z
dc.date.available 2014-03-01T02:42:57Z
dc.date.issued 2004 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31150
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-8444241518&partnerID=40&md5=3a58639fbe315e40b3d1dd1244afa0cd en
dc.relation.uri http://www.image.ece.ntua.gr/papers/259.pdf en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/conf/iceis/iceis2004-2.html#WallaceK04 en
dc.subject Agglomerative clustering en
dc.subject Dimensionality curse en
dc.subject Feature selection en
dc.subject Machine learning en
dc.subject Soft computing en
dc.subject Unsupervised techniques en
dc.subject.other Agglomeration en
dc.subject.other Algorithms en
dc.subject.other Data reduction en
dc.subject.other Error analysis en
dc.subject.other Information analysis en
dc.subject.other Large scale systems en
dc.subject.other Learning systems en
dc.subject.other Pattern recognition en
dc.subject.other Robustness (control systems) en
dc.subject.other Agglomerative clustering en
dc.subject.other Dimensionality curse en
dc.subject.other Feature selection en
dc.subject.other Soft computing en
dc.subject.other Unsupervised techniques en
dc.subject.other Neural networks en
dc.title Robust, generalized, quick and efficient agglomerative clustering en
heal.type conferenceItem en
heal.publicationDate 2004 en
heal.abstract Hierarchical approaches, which are dominated by the generic agglomerative clustering algorithm, are suitable for cases in which the count of distinct clusters in the data is not known a priori; this is not a rare case in real data. On the other hand, important problems are related to their application, such as susceptibility to errors in the initial steps that propagate all the way to the final output and high complexity. Finally, similarly to all other clustering techniques, their efficiency decreases as the dimensionality of their input increases. In this paper we propose a robust, generalized, quick and efficient extension to the generic agglomerative clustering process. Robust refers to the proposed approach's ability to overcome the classic algorithm's susceptibility to errors in the initial steps, generalized to its ability to simultaneously consider multiple distance metrics, quick to its suitability for application to larger datasets via the application of the computationally expensive components to only a subset of the available data samples and efficient to its ability to produce results that are comparable to those of trained classifiers, largely outperforming the generic agglomerative process. en
heal.journalName ICEIS 2004 - Proceedings of the Sixth International Conference on Enterprise Information Systems en
dc.identifier.spage 409 en
dc.identifier.epage 416 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής