dc.contributor.author |
Georgiou, S |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T02:42:58Z |
|
dc.date.available |
2014-03-01T02:42:58Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0925-1022 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31155 |
|
dc.subject |
Construction |
en |
dc.subject |
Diophantine equations |
en |
dc.subject |
Generalized orthogonal designs |
en |
dc.subject |
Self-dual codes |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Codes (symbols) |
en |
dc.subject.other |
Construction |
en |
dc.subject.other |
Cryptography |
en |
dc.subject.other |
Logic design |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Diophantine equations |
en |
dc.subject.other |
Generalized orthogonal designs |
en |
dc.subject.other |
Self-dual codes |
en |
dc.subject.other |
Combinatorial mathematics |
en |
dc.title |
Self-orthogonal and self-dual codes constructed via combinatorial designs and diophantine equations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1023/B:DESI.0000029222.35938.bf |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/B:DESI.0000029222.35938.bf |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Combinatorial designs have been widely used, in the construction of self-dual codes. Recently, new methods of constructing self-dual codes are established using orthogonal designs (ODs), generalized orthogonal designs (GODs), a set of four sequences and Diophantine equations over GF(p). These methods had led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we used some methods to construct self-orthogonal and self dual codes over GF(p), for some primes p. The construction is achieved by using some special kinds of combinatorial designs like orthogonal designs and GODs. Moreover, we combine eight circulant matrices, a system of Diophantine equations over GF(p), and a recently discovered array to obtain a new construction method. Using this method new self-dual and self-orthogonal codes are obtained. Specifically, we obtain new self-dual codes [32; 16; 12] over GF(11) and GF(13) which improve the previously known distances. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Designs, Codes, and Cryptography |
en |
dc.identifier.doi |
10.1023/B:DESI.0000029222.35938.bf |
en |
dc.identifier.isi |
ISI:000221666000015 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
193 |
en |
dc.identifier.epage |
206 |
en |