HEAL DSpace

Self-orthogonal and self-dual codes constructed via combinatorial designs and diophantine equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, S en
dc.contributor.author Koukouvinos, C en
dc.date.accessioned 2014-03-01T02:42:58Z
dc.date.available 2014-03-01T02:42:58Z
dc.date.issued 2004 en
dc.identifier.issn 0925-1022 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31155
dc.subject Construction en
dc.subject Diophantine equations en
dc.subject Generalized orthogonal designs en
dc.subject Self-dual codes en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.subject.other Codes (symbols) en
dc.subject.other Construction en
dc.subject.other Cryptography en
dc.subject.other Logic design en
dc.subject.other Mathematical models en
dc.subject.other Matrix algebra en
dc.subject.other Vectors en
dc.subject.other Diophantine equations en
dc.subject.other Generalized orthogonal designs en
dc.subject.other Self-dual codes en
dc.subject.other Combinatorial mathematics en
dc.title Self-orthogonal and self-dual codes constructed via combinatorial designs and diophantine equations en
heal.type conferenceItem en
heal.identifier.primary 10.1023/B:DESI.0000029222.35938.bf en
heal.identifier.secondary http://dx.doi.org/10.1023/B:DESI.0000029222.35938.bf en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Combinatorial designs have been widely used, in the construction of self-dual codes. Recently, new methods of constructing self-dual codes are established using orthogonal designs (ODs), generalized orthogonal designs (GODs), a set of four sequences and Diophantine equations over GF(p). These methods had led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we used some methods to construct self-orthogonal and self dual codes over GF(p), for some primes p. The construction is achieved by using some special kinds of combinatorial designs like orthogonal designs and GODs. Moreover, we combine eight circulant matrices, a system of Diophantine equations over GF(p), and a recently discovered array to obtain a new construction method. Using this method new self-dual and self-orthogonal codes are obtained. Specifically, we obtain new self-dual codes [32; 16; 12] over GF(11) and GF(13) which improve the previously known distances. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Designs, Codes, and Cryptography en
dc.identifier.doi 10.1023/B:DESI.0000029222.35938.bf en
dc.identifier.isi ISI:000221666000015 en
dc.identifier.volume 32 en
dc.identifier.issue 1-3 en
dc.identifier.spage 193 en
dc.identifier.epage 206 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής