dc.contributor.author |
Papageorgiou, EH |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:43:00Z |
|
dc.date.available |
2014-03-01T02:43:00Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31182 |
|
dc.subject |
Critical point |
en |
dc.subject |
Ordinary p-Laplacian |
en |
dc.subject |
Palais-Smale condition |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject |
Strong deformation retract |
en |
dc.subject |
Strong resonance |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Two nontrivial solutions for quasilinear periodic equations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1090/S0002-9939-03-07076-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9939-03-07076-X |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper we study a nonlinear periodic problem driven by the ordinary scalar p-Laplacian and with a Carathéodory nonlinearity. We establish the existence of at least two nontrivial solutions. Our approach is variational based on the smooth critical point theory and using the ""Second Deformation Theorem"". |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Proceedings of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9939-03-07076-X |
en |
dc.identifier.isi |
ISI:000186169800016 |
en |
dc.identifier.volume |
132 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
429 |
en |
dc.identifier.epage |
434 |
en |