HEAL DSpace

Understanding and predicting structure-property relations in polymeric materials through molecular simulations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T02:43:00Z
dc.date.available 2014-03-01T02:43:00Z
dc.date.issued 2004 en
dc.identifier.issn 0026-8976 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31185
dc.subject Molecular Simulation en
dc.subject Structural Properties en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Crystalline materials en
dc.subject.other Deformation en
dc.subject.other Fracture en
dc.subject.other Gyrators en
dc.subject.other Macromolecules en
dc.subject.other Molecular weight en
dc.subject.other Monte Carlo methods en
dc.subject.other Polymers en
dc.subject.other Rheology en
dc.subject.other Solubility en
dc.subject.other Thermodynamic properties en
dc.subject.other Viscoelasticity en
dc.subject.other Atomistic algorithms en
dc.subject.other Entanglement networks en
dc.subject.other Molecular simulations en
dc.subject.other Torsional energy barriers en
dc.subject.other Molecular dynamics en
dc.title Understanding and predicting structure-property relations in polymeric materials through molecular simulations en
heal.type conferenceItem en
heal.identifier.primary 10.1080/00268970310001640085 en
heal.identifier.secondary http://dx.doi.org/10.1080/00268970310001640085 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract The development of computational methods for predicting thermal, mechanical and rheological properties of polymers from chemical constitution calls for hierarchical strategies, which are capable of addressing the broad spectra of length and time scales governing the behaviour of these materials. This paper reviews three recently developed strategies that appear particularly promising: (a) use of connectivity-altering Monte Carlo algorithms for rapid equilibration of atomistic models of long-chain polymer systems and calculation of their structural and thermodynamic properties; (b) mapping of molecular dynamics trajectories onto the Rouse and reptation models for the prediction of linear viscoelastic properties; (c) kinetic Monte Carlo simulations of large network specimens, generated on the basis of self-consistent field theoretical analysis, for tracking large-scale deformation and fracture of polymer-polymer interfaces. How connections can be established between the atomistic, mesoscopic (entanglement network) and macroscopic (continuum) descriptions is discussed. Validations of the simulation results against experiment are presented and questions pertaining to materials design are addressed. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName Molecular Physics en
dc.identifier.doi 10.1080/00268970310001640085 en
dc.identifier.isi ISI:000220893900003 en
dc.identifier.volume 102 en
dc.identifier.issue 2 PART I en
dc.identifier.spage 147 en
dc.identifier.epage 166 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής