HEAL DSpace

Using k-nearest neighbor and feature selection as an improvement to hierarchical clustering

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mylonas, P en
dc.contributor.author Wallace, M en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:43:00Z
dc.date.available 2014-03-01T02:43:00Z
dc.date.issued 2004 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31189
dc.subject Curse of Dimensionality en
dc.subject Error Propagation en
dc.subject Feature Selection en
dc.subject Hierarchical Clustering en
dc.subject K Nearest Neighbor en
dc.subject Number of Clusters en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Algorithms en
dc.subject.other Database systems en
dc.subject.other Error analysis en
dc.subject.other Feature extraction en
dc.subject.other Problem solving en
dc.subject.other Set theory en
dc.subject.other Data sets en
dc.subject.other Feature scales en
dc.subject.other Hierarchical clustering en
dc.subject.other Partitioning clustering en
dc.subject.other Hierarchical systems en
dc.title Using k-nearest neighbor and feature selection as an improvement to hierarchical clustering en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-24674-9_21 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-24674-9_21 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Clustering of data is a difficult problem that is related to various fields and applications. Challenge is greater, as input space dimensions become larger and feature scales are different from each other. Hierarchical clustering methods are more flexible than their partitioning counterparts, as they do not need the number of clusters as input. Still, plain hierarchical clustering does not provide a satisfactory framework for extracting meaningful results in such cases. Major drawbacks have to be tackled, such as curse of dimensionality and initial error propagation, as well as complexity and data set size issues. In this paper we propose an unsupervised extension to hierarchical clustering in the means of feature selection, in order to overcome the first drawback, thus increasing the robustness of the whole algorithm. The results of the application of this clustering to a portion of dataset in question are then refined and extended to the whole dataset through a classification step, using k-nearest neighbor classification technique, in order to tackle the latter two problems. The performance of the proposed methodology is demonstrated through the application to a variety of well known publicly available data sets. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/978-3-540-24674-9_21 en
dc.identifier.isi ISI:000221610800021 en
dc.identifier.volume 3025 en
dc.identifier.spage 191 en
dc.identifier.epage 200 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής