HEAL DSpace

A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papandreou, G en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:43:03Z
dc.date.available 2014-03-01T02:43:03Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31196
dc.subject Computer Vision en
dc.subject Cross Validation en
dc.subject Diffusion Process en
dc.subject image denoising en
dc.subject Natural Images en
dc.subject Nonlinear Diffusion en
dc.subject Scale Space en
dc.subject Statistical Approach en
dc.subject Statistical Model en
dc.subject.other Acoustic noise en
dc.subject.other Algorithms en
dc.subject.other Computer vision en
dc.subject.other Mathematical models en
dc.subject.other Problem solving en
dc.subject.other Statistical methods en
dc.subject.other Image denoising en
dc.subject.other Nonlinear diffusion en
dc.subject.other Robust algorithms en
dc.subject.other Image analysis en
dc.title A cross-validatory statistical approach to scale selection for image denoising by nonlinear diffusion en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CVPR.2005.21 en
heal.identifier.secondary http://dx.doi.org/10.1109/CVPR.2005.21 en
heal.identifier.secondary 1467326 en
heal.publicationDate 2005 en
heal.abstract Scale-spaces induced by diffusion processes play an important role in many computer vision tasks. Automatically selecting the most appropriate scale for a particular problem is a central issue for the practical applicability of such scale-space techniques. This paper concentrates on automatic scale selection when nonlinear diffusion scale-spaces are utilized for image denoising. The problem is studied in a statistical model selection framework and cross-validation techniques are utilized to address it in a principled way. The proposed novel algorithms do not require knowledge of the noise variance and have acceptable computational cost. Extensive experiments on natural images show that the proposed methodology leads to robust algorithms, which out-perform existing techniques for a wide range of noise types and noise levels. © 2005 IEEE. en
heal.journalName Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 en
dc.identifier.doi 10.1109/CVPR.2005.21 en
dc.identifier.volume I en
dc.identifier.spage 625 en
dc.identifier.epage 630 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής