HEAL DSpace

A real time simulation model of glucose-insulin metabolism for type 1 diabetes patients

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SG en
dc.contributor.author Prountzou, K en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:43:05Z
dc.date.available 2014-03-01T02:43:05Z
dc.date.issued 2005 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31218
dc.subject Compartmental models en
dc.subject Diabetes mellilus en
dc.subject Neural networks en
dc.subject RTRL algorithm en
dc.subject Simulation en
dc.subject.other Glucose en
dc.subject.other Insulin en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Patient treatment en
dc.subject.other Real time systems en
dc.subject.other Compartmental models en
dc.subject.other Diabetes mellilus en
dc.subject.other RTRL algorithm en
dc.subject.other Metabolism en
dc.title A real time simulation model of glucose-insulin metabolism for type 1 diabetes patients en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2005.1616403 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2005.1616403 en
heal.identifier.secondary 1616403 en
heal.publicationDate 2005 en
heal.abstract In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients. © 2005 IEEE. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2005.1616403 en
dc.identifier.volume 7 VOLS en
dc.identifier.spage 298 en
dc.identifier.epage 301 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής