HEAL DSpace

A weighted maximum entropy language model for text classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fragos, K en
dc.contributor.author Maistros, Y en
dc.contributor.author Skourlas, C en
dc.date.accessioned 2014-03-01T02:43:05Z
dc.date.available 2014-03-01T02:43:05Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31226
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-78651308482&partnerID=40&md5=2ac3ada742caf8fee55fd3699fca87c6 en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/conf/nlucs/nlucs2005.html#FragosMS05 en
dc.relation.uri http://glotta.ntua.gr/nlp_lab/Fraggos/files/MaxEntropyTC.pdf en
dc.relation.uri http://glotta.ntua.gr/nlp/nlp_lab/Fraggos/files/MaxEntropyTC.pdf en
dc.subject Language Model en
dc.subject Maximum Entropy en
dc.subject Maximum Entropy Model en
dc.subject Natural Language Processing en
dc.subject part-of-speech tagging en
dc.subject Text Classification en
dc.subject Text Segmentation en
dc.subject.other Classification scheme en
dc.subject.other Classification tasks en
dc.subject.other Data sets en
dc.subject.other Feature words en
dc.subject.other Language model en
dc.subject.other Language modeling en
dc.subject.other Maximum entropy en
dc.subject.other Maximum entropy modeling en
dc.subject.other NAtural language processing en
dc.subject.other Part of speech tagging en
dc.subject.other Reuters-21578 en
dc.subject.other State of the art en
dc.subject.other Text classification en
dc.subject.other Text segmentation en
dc.subject.other Classification (of information) en
dc.subject.other Computational linguistics en
dc.subject.other Entropy en
dc.subject.other Feature extraction en
dc.subject.other Natural language processing systems en
dc.subject.other Statistical tests en
dc.subject.other Text processing en
dc.title A weighted maximum entropy language model for text classification en
heal.type conferenceItem en
heal.publicationDate 2005 en
heal.abstract The Maximum entropy (ME) approach has been extensively used in various Natural Language Processing tasks, such as language modeling, partof-speech tagging, text classification and text segmentation. Previous work in text classification was conducted using maximum entropy modeling with binary-valued features or counts of feature words. In this work, we present a method for applying Maximum Entropy modeling for text classification in a different way. Weights are used to select the features of the model and estimate the contribution of each extracted feature in the classification task. Using the X square test to assess the importance of each candidate feature we rank them and the most prevalent features, the most highly ranked, are used as the features of the model. Hence, instead of applying Maximum Entropy modeling in the classical way, we use the X square values to assign weights to the features of the model. Our method was evaluated on Reuters-21578 dataset for test classification tasks, giving promising results and comparably performing with some of the ""state of the art"" classification schemes. en
heal.journalName Proceedings of the 2nd International Workshop on Natural Language Understanding and Cognitive Science, NLUCS 2005, in Conjunction with ICEIS 2005 en
dc.identifier.spage 55 en
dc.identifier.epage 67 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής