dc.contributor.author |
Fragos, K |
en |
dc.contributor.author |
Maistros, Y |
en |
dc.contributor.author |
Skourlas, C |
en |
dc.date.accessioned |
2014-03-01T02:43:05Z |
|
dc.date.available |
2014-03-01T02:43:05Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31226 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-78651308482&partnerID=40&md5=2ac3ada742caf8fee55fd3699fca87c6 |
en |
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/conf/nlucs/nlucs2005.html#FragosMS05 |
en |
dc.relation.uri |
http://glotta.ntua.gr/nlp_lab/Fraggos/files/MaxEntropyTC.pdf |
en |
dc.relation.uri |
http://glotta.ntua.gr/nlp/nlp_lab/Fraggos/files/MaxEntropyTC.pdf |
en |
dc.subject |
Language Model |
en |
dc.subject |
Maximum Entropy |
en |
dc.subject |
Maximum Entropy Model |
en |
dc.subject |
Natural Language Processing |
en |
dc.subject |
part-of-speech tagging |
en |
dc.subject |
Text Classification |
en |
dc.subject |
Text Segmentation |
en |
dc.subject.other |
Classification scheme |
en |
dc.subject.other |
Classification tasks |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Feature words |
en |
dc.subject.other |
Language model |
en |
dc.subject.other |
Language modeling |
en |
dc.subject.other |
Maximum entropy |
en |
dc.subject.other |
Maximum entropy modeling |
en |
dc.subject.other |
NAtural language processing |
en |
dc.subject.other |
Part of speech tagging |
en |
dc.subject.other |
Reuters-21578 |
en |
dc.subject.other |
State of the art |
en |
dc.subject.other |
Text classification |
en |
dc.subject.other |
Text segmentation |
en |
dc.subject.other |
Classification (of information) |
en |
dc.subject.other |
Computational linguistics |
en |
dc.subject.other |
Entropy |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Natural language processing systems |
en |
dc.subject.other |
Statistical tests |
en |
dc.subject.other |
Text processing |
en |
dc.title |
A weighted maximum entropy language model for text classification |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The Maximum entropy (ME) approach has been extensively used in various Natural Language Processing tasks, such as language modeling, partof-speech tagging, text classification and text segmentation. Previous work in text classification was conducted using maximum entropy modeling with binary-valued features or counts of feature words. In this work, we present a method for applying Maximum Entropy modeling for text classification in a different way. Weights are used to select the features of the model and estimate the contribution of each extracted feature in the classification task. Using the X square test to assess the importance of each candidate feature we rank them and the most prevalent features, the most highly ranked, are used as the features of the model. Hence, instead of applying Maximum Entropy modeling in the classical way, we use the X square values to assign weights to the features of the model. Our method was evaluated on Reuters-21578 dataset for test classification tasks, giving promising results and comparably performing with some of the ""state of the art"" classification schemes. |
en |
heal.journalName |
Proceedings of the 2nd International Workshop on Natural Language Understanding and Cognitive Science, NLUCS 2005, in Conjunction with ICEIS 2005 |
en |
dc.identifier.spage |
55 |
en |
dc.identifier.epage |
67 |
en |