dc.contributor.author |
Katsamanis, A |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:43:06Z |
|
dc.date.available |
2014-03-01T02:43:06Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31229 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33745196020&partnerID=40&md5=5da0a93c02d63f815d5f1bc137536162 |
en |
dc.relation.uri |
http://cvsp.cs.ntua.gr/projects/pub/HIWIRE/HiwirePublications/KatsamanisMaragos_StatisticalTracking_IS2005.pdf |
en |
dc.relation.uri |
http://www.isca-speech.org/archive/interspeech_2005/i05_1125.html |
en |
dc.relation.uri |
http://www.informatik.uni-trier.de/~ley/db/conf/interspeech/interspeech2005.html#KatsamanisM05 |
en |
dc.subject |
Bandpass Filter |
en |
dc.subject |
Frequency Estimation |
en |
dc.subject |
Particle Filter |
en |
dc.subject |
Statistical Estimation |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Bandpass filters |
en |
dc.subject.other |
Natural frequencies |
en |
dc.subject.other |
Resonance |
en |
dc.subject.other |
Speech analysis |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
AM-FM speech components |
en |
dc.subject.other |
Particle filtering |
en |
dc.subject.other |
Real speech signals |
en |
dc.subject.other |
Statistical estimation |
en |
dc.subject.other |
Acoustic signal processing |
en |
dc.title |
Advances in statistical estimation and tracking of AM-FM speech components |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper we present two extensions of a statistical framework to demodulate speech resonances, which are modeled as AM-FM signals. The first approach utilizes bandpass filtering and a standard demodulation algorithm which regularizes instantaneous amplitude and frequency estimates. The second employs particle filtering techniques to allow temporal variations of the parameters that are connected with spectral characteristics of the analyzed signal. Results are presented on both synthetic and real speech signals and improved performance is demonstrated. Both approaches appear to cope quite satisfactorily with the nonstationarity of speech signals. |
en |
heal.journalName |
9th European Conference on Speech Communication and Technology |
en |
dc.identifier.spage |
1125 |
en |
dc.identifier.epage |
1128 |
en |