HEAL DSpace

Advances in variational image segmentation using AM-FM models: Regularized demodulation and probabilistic cue integration

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Evangelopoulos, G en
dc.contributor.author Kokkinos, I en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:43:06Z
dc.date.available 2014-03-01T02:43:06Z
dc.date.issued 2005 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31230
dc.subject Cue Integration en
dc.subject Derived Equivalence en
dc.subject Evolution Equation en
dc.subject Feature Extraction en
dc.subject Generic Model en
dc.subject Image Segmentation en
dc.subject Noise Robustness en
dc.subject Unsupervised Segmentation en
dc.subject Level Set Method en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Algorithms en
dc.subject.other Demodulation en
dc.subject.other Feature extraction en
dc.subject.other Level control en
dc.subject.other Mathematical models en
dc.subject.other Signal filtering and prediction en
dc.subject.other Textures en
dc.subject.other Variational techniques en
dc.subject.other AM-FM models en
dc.subject.other Berkeley segmentation en
dc.subject.other Complex textured images en
dc.subject.other Demodulation algorithm en
dc.subject.other Level set methods en
dc.subject.other Multiband filtering en
dc.subject.other Image segmentation en
dc.title Advances in variational image segmentation using AM-FM models: Regularized demodulation and probabilistic cue integration en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11567646_11 en
heal.identifier.secondary http://dx.doi.org/10.1007/11567646_11 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract Current state-of-the-art methods in variational image segmentation using level set methods are able to robustly segment complex textured images in an unsupervised manner. In recent work, [18,19] we have explored the potential of AM-FM features for driving the unsupervised segmentation of a wide variety of textured images. Our first contribution in this work is at the feature extraction level, where we introduce a regularized approach to the demodulation of the AM-FM -modelled signals. By replacing the cascade of multiband filtering and subsequent differentiation with analytically derived equivalent filtering operations, increased noise-robustness can be achieved, while discretization problems in the implementation of the demodulation algorithm are alleviated. Our second contribution is based on a generative model we have recently proposed [18,20] that offers a measure related to the local prominence of a specific class of features, like edges and textures. The introduction of these measures as weighting terms in the evolution equations facilitates the fusion of different cues in a simple and efficient manner. Our systematic evaluation on the Berkeley segmentation benchmark demonstrates that this fusion method offers improved results when compared to our previous work as well as current state-of-the-art methods. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11567646_11 en
dc.identifier.isi ISI:000233133600011 en
dc.identifier.volume 3752 LNCS en
dc.identifier.spage 121 en
dc.identifier.epage 136 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής