dc.contributor.author |
Kokkinos, I |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:43:06Z |
|
dc.date.available |
2014-03-01T02:43:06Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31236 |
|
dc.subject |
Em Algorithm |
en |
dc.subject |
Expectation Maximization |
en |
dc.subject |
Generic Model |
en |
dc.subject |
Image Segmentation |
en |
dc.subject |
Object Categorization |
en |
dc.subject |
Object Detection |
en |
dc.subject.other |
Adaptive algorithms |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Expectation Maximization (EM) algorithms |
en |
dc.subject.other |
Fitting models |
en |
dc.subject.other |
Generative models |
en |
dc.subject.other |
Object categorization |
en |
dc.subject.other |
Object recognition |
en |
dc.title |
An expectation maximization approach to the synergy between image segmentation and object categorization |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICCV.2005.35 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICCV.2005.35 |
en |
heal.identifier.secondary |
1541311 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this work we deal with the problem of modelling and exploiting the interaction between the processes of image segmentation and object categorization. We propose a novel framework to address this problem that is based on the combination of the Expectation Maximization (EM) algorithm and generative models for object categories. Using a concise formulation of the interaction between these two processes, segmentation is interpreted as the E step, assigning observations to models, whereas object detection/analysis is modelled as the M-step, fitting models to observations. We present in detail the segmentation and detection processes comprising the E and M steps and demonstrate results on the joint detection and segmentation of the object categories of faces and cars. © 2005 IEEE. |
en |
heal.journalName |
Proceedings of the IEEE International Conference on Computer Vision |
en |
dc.identifier.doi |
10.1109/ICCV.2005.35 |
en |
dc.identifier.volume |
I |
en |
dc.identifier.spage |
617 |
en |
dc.identifier.epage |
624 |
en |