HEAL DSpace

An extreme value based neural clustering approach for identifying traffic states

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Stathopoulos, A en
dc.date.accessioned 2014-03-01T02:43:06Z
dc.date.available 2014-03-01T02:43:06Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31237
dc.subject Extreme Event en
dc.subject Extreme Value en
dc.subject Peak Detection en
dc.subject Real-time Traffic en
dc.subject Self Organization en
dc.subject Time Series en
dc.subject.other Boundary conditions en
dc.subject.other Data flow analysis en
dc.subject.other Data reduction en
dc.subject.other Information retrieval en
dc.subject.other Neural networks en
dc.subject.other Real time systems en
dc.subject.other Modeling congested condition en
dc.subject.other Real-time traffic data en
dc.subject.other Traffic data en
dc.subject.other Traffic forecasting en
dc.subject.other Highway traffic control en
dc.title An extreme value based neural clustering approach for identifying traffic states en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ITSC.2005.1520197 en
heal.identifier.secondary http://dx.doi.org/10.1109/ITSC.2005.1520197 en
heal.identifier.secondary 1520197 en
heal.publicationDate 2005 en
heal.abstract Traffic data are characterized by the occurrence of extreme events and frequent shifts to and from congestion. Current practice in traffic forecasting suppresses or disregards these features. But, indications suggest that these features may encompass useful information for modeling congested condition, as well as the transitions to and from congestion. This paper proposes a self-organizing approach to clustering traffic conditions based on information acquired from the 'peaking' behavior of traffic. Primary findings suggest that traffic has a strong transitional behavior that is reflected by frequent peaks detected in time series of volume and occupancy. The main finding is that traffic can be clustered into four distinct areas of traffic characteristics: (i) free-flow, (ii) medium flow states where traffic volume fluctuates in high values and occupancy is low, (iii) medium flow states where volume fluctuates in high values but occupancy increases sharply, and (iv) congestion. The main contribution of this approach is that it enables extracting a posteriori information from real-time traffic data as it pertains to boundary traffic conditions and it clusters traffic based on the occurrence of transitional movements. © 2005 IEEE. en
heal.journalName IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC en
dc.identifier.doi 10.1109/ITSC.2005.1520197 en
dc.identifier.volume 2005 en
dc.identifier.spage 1056 en
dc.identifier.epage 1061 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής