dc.contributor.author |
Stampoulidis, L |
en |
dc.contributor.author |
Kehayas, E |
en |
dc.contributor.author |
Vyrsokinos, K |
en |
dc.contributor.author |
Christodoulopoulos, K |
en |
dc.contributor.author |
Tsiokos, D |
en |
dc.contributor.author |
Bakopoulos, P |
en |
dc.contributor.author |
Kanellos, GT |
en |
dc.contributor.author |
Vlachos, K |
en |
dc.contributor.author |
Varvarigos, EA |
en |
dc.contributor.author |
Avramopoulos, H |
en |
dc.date.accessioned |
2014-03-01T02:43:08Z |
|
dc.date.available |
2014-03-01T02:43:08Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31253 |
|
dc.subject |
Blocking Probability |
en |
dc.subject |
High Performance |
en |
dc.subject |
Optical Signal Processing |
en |
dc.subject |
Performance Model |
en |
dc.subject |
Physical Layer |
en |
dc.subject |
Resource Reservation |
en |
dc.subject |
Theoretical Model |
en |
dc.subject |
and Forward |
en |
dc.subject |
Bit Error Rate |
en |
dc.subject.other |
Control signals |
en |
dc.subject.other |
Optical signal processing |
en |
dc.subject.other |
Resource reservation-based signaling algorithms |
en |
dc.subject.other |
Signal quality |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Bit error rate |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Frequency hopping |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Packet networks |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Synchronization |
en |
dc.subject.other |
Routers |
en |
dc.title |
ARTEMIS: A 40 Gb/s all-optical self-router using asynchronous bit and packet-level optical signal processing |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/GLOCOM.2005.1578023 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/GLOCOM.2005.1578023 |
en |
heal.identifier.secondary |
1578023 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We present a 40 Gb/s asynchronous self-routing network and node architecture that exploits bit and packet level optical signal processing to perform synchronization, forwarding and switching. Optical packets are self-routed on a hop-by-hop basis through the network by using stacked optical tags, each representing a specific optical node. Each tag contains control signals for configuring the switching matrix and forwarding each packet to the appropriate outgoing link and onto the next hop. Physical layer simulations are performed, modeling each optical sub-system of the node showing acceptable signal quality and Bit Error Rates. Resource reservation-based signaling algorithms are theoretically modeled for the control plane capable of providing high performance in terms of blocking probability and holding time. © 2005 IEEE. |
en |
heal.journalName |
GLOBECOM - IEEE Global Telecommunications Conference |
en |
dc.identifier.doi |
10.1109/GLOCOM.2005.1578023 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
2035 |
en |
dc.identifier.epage |
2040 |
en |