HEAL DSpace

Auditory teager energy cepstrum coefficients for robust speech recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimitriadis, D en
dc.contributor.author Maragos, P en
dc.contributor.author Potamianos, A en
dc.date.accessioned 2014-03-01T02:43:09Z
dc.date.available 2014-03-01T02:43:09Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31254
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33745225159&partnerID=40&md5=fdcff3918c3ab9bb541dad7384cbe9cc en
dc.relation.uri http://cvsp.cs.ntua.gr/publications/confr/DimitriadisMaragosPotamianos_AuditTeagEnergCepstrumRobustSpeechRecogn_Interspeech2005.pdf en
dc.relation.uri http://www.telecom.tuc.gr/%7Epotam/preprints/conf/05_EURO_features.pdf en
dc.relation.uri http://www.isca-speech.org/archive/interspeech_2005/i05_3013.html en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/conf/interspeech/interspeech2005.html#DimitriadisMP05 en
dc.subject Additive Noise en
dc.subject Feature Extraction en
dc.subject Human Auditory Processing en
dc.subject Speech Recognition en
dc.subject Error Rate en
dc.subject Mel Frequency Cepstrum Coefficient en
dc.subject Word Error Rate en
dc.subject.other Acoustic noise en
dc.subject.other Computational linguistics en
dc.subject.other Error analysis en
dc.subject.other Feature extraction en
dc.subject.other Magnetic resonance en
dc.subject.other Natural frequencies en
dc.subject.other Speech recognition en
dc.subject.other Energy cepstrum coefficients en
dc.subject.other Phone recognition tasks en
dc.subject.other Recording conditions en
dc.subject.other Teager Energy Cepstrum Coefficients (TECC) en
dc.subject.other Learning algorithms en
dc.title Auditory teager energy cepstrum coefficients for robust speech recognition en
heal.type conferenceItem en
heal.publicationDate 2005 en
heal.abstract In this paper, a feature extraction algorithm for robust speech recognition is introduced. The feature extraction algorithm is motivated by the human auditory processing and the nonlinear Teager-Kaiser energy operator that estimates the true energy of the source of a resonance. The proposed features are labeled as Teager Energy Cepstrum Coefficients (TECCs). TECCs are computed by first filtering the speech signal through a dense non constant-Q Gammatone filterbank and then by estimating the ""true"" energy of the signal's source, i.e., the short-time average of the output of the Teager-Kaiser energy operator. Error analysis and speech recognition experiments show that the TECCs and the mel frequency cepstrum coefficients (MFCCs) perform similarly for clean recording conditions; while the TECCs perform significantly better than the MFCCs for noisy recognition tasks. Specifically, relative word error rate improvement of 60% over the MFCC baseline is shown for the Aurora-3 database for the high-mismatch condition. Absolute error rate improvement ranging from 5% to 20% is shown for a phone recognition task in (various types of additive) noise. en
heal.journalName 9th European Conference on Speech Communication and Technology en
dc.identifier.spage 3013 en
dc.identifier.epage 3016 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής