dc.contributor.author |
Katsikadelis, JT |
en |
dc.contributor.author |
Tsiatas, GC |
en |
dc.date.accessioned |
2014-03-01T02:43:10Z |
|
dc.date.available |
2014-03-01T02:43:10Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31263 |
|
dc.subject |
Analog equation method |
en |
dc.subject |
Beams |
en |
dc.subject |
Buckling shape optimization |
en |
dc.subject |
Integral equation method |
en |
dc.subject |
Variable cross section |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Analog equation method |
en |
dc.subject.other |
Beams |
en |
dc.subject.other |
Buckling shape optimization |
en |
dc.subject.other |
Integral equation method |
en |
dc.subject.other |
Variable cross section |
en |
dc.subject.other |
Beams and girders |
en |
dc.title |
Buckling load optimization of beams |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/s00419-005-0402-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00419-005-0402-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
In this paper, shape optimization is used to optimize the buckling load of a Euler-Bernoulli beam having constant volume. This is achieved by varying appropriately the beam cross section so that the beam buckles with the maximum or a prescribed buckling load. The problem is reduced to a nonlinear optimization problem under equality and inequality constraints as well as specified lower and upper bounds. The evaluation of the objective function requires the solution of the buckling problem of a beam with variable stiffness subjected to an axial force. This problem is solved using the analog equation method for the fourth-order ordinary differential equation with variable coefficients. Besides its accuracy, this method overcomes the shortcomings of a possible FEM solution, which would require resizing of the elements and recomputation of their stiffness properties during the optimization process. Several example problems are presented that illustrate the method and demonstrate its efficiency. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/s00419-005-0402-9 |
en |
dc.identifier.isi |
ISI:000233634700009 |
en |
dc.identifier.volume |
74 |
en |
dc.identifier.issue |
11-12 |
en |
dc.identifier.spage |
790 |
en |
dc.identifier.epage |
799 |
en |