HEAL DSpace

Buckling load optimization of beams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T02:43:10Z
dc.date.available 2014-03-01T02:43:10Z
dc.date.issued 2005 en
dc.identifier.issn 0939-1533 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31263
dc.subject Analog equation method en
dc.subject Beams en
dc.subject Buckling shape optimization en
dc.subject Integral equation method en
dc.subject Variable cross section en
dc.subject.classification Mechanics en
dc.subject.other Buckling en
dc.subject.other Constraint theory en
dc.subject.other Differential equations en
dc.subject.other Finite element method en
dc.subject.other Integral equations en
dc.subject.other Optimization en
dc.subject.other Stiffness en
dc.subject.other Analog equation method en
dc.subject.other Beams en
dc.subject.other Buckling shape optimization en
dc.subject.other Integral equation method en
dc.subject.other Variable cross section en
dc.subject.other Beams and girders en
dc.title Buckling load optimization of beams en
heal.type conferenceItem en
heal.identifier.primary 10.1007/s00419-005-0402-9 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00419-005-0402-9 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper, shape optimization is used to optimize the buckling load of a Euler-Bernoulli beam having constant volume. This is achieved by varying appropriately the beam cross section so that the beam buckles with the maximum or a prescribed buckling load. The problem is reduced to a nonlinear optimization problem under equality and inequality constraints as well as specified lower and upper bounds. The evaluation of the objective function requires the solution of the buckling problem of a beam with variable stiffness subjected to an axial force. This problem is solved using the analog equation method for the fourth-order ordinary differential equation with variable coefficients. Besides its accuracy, this method overcomes the shortcomings of a possible FEM solution, which would require resizing of the elements and recomputation of their stiffness properties during the optimization process. Several example problems are presented that illustrate the method and demonstrate its efficiency. en
heal.publisher SPRINGER en
heal.journalName Archive of Applied Mechanics en
dc.identifier.doi 10.1007/s00419-005-0402-9 en
dc.identifier.isi ISI:000233634700009 en
dc.identifier.volume 74 en
dc.identifier.issue 11-12 en
dc.identifier.spage 790 en
dc.identifier.epage 799 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής