HEAL DSpace

Combining GAs and RBF neural networks for fuzzy rule extraction from numerical data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Wallace, M en
dc.contributor.author Tsapatsoulis, N en
dc.date.accessioned 2014-03-01T02:43:10Z
dc.date.available 2014-03-01T02:43:10Z
dc.date.issued 2005 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31270
dc.subject Fuzzy Rules en
dc.subject Genetic Algorithm en
dc.subject rbf neural network en
dc.subject Resource Allocation en
dc.subject Unsupervised Clustering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Artificial intelligence en
dc.subject.other Computer science en
dc.subject.other Data structures en
dc.subject.other Fuzzy control en
dc.subject.other Genetic algorithms en
dc.subject.other Numerical analysis en
dc.subject.other Optimization en
dc.subject.other Resource allocation en
dc.subject.other Clustering techniques en
dc.subject.other Fuzzy rule extraction en
dc.subject.other Input dimensions en
dc.subject.other Resource Allocating Networks en
dc.subject.other Radial basis function networks en
dc.title Combining GAs and RBF neural networks for fuzzy rule extraction from numerical data en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11550907_82 en
heal.identifier.secondary http://dx.doi.org/10.1007/11550907_82 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The idea of using RBF neural networks for fuzzy rule extraction from numerical data is not new. The structure of this kind of architectures, which supports clustering of data samples, is favorable for considering clusters as if-then rules. However, in order for real if-then rules to be derived, proper antecedent parts for each cluster need to be constructed by selecting the appropriate subspace of input space that best matches each cluster's properties. In this paper we address the problem of antecedent part construction by (a) initializing the hidden layer of an RBF-Resource Allocating Network using an unsupervised clustering technique whose metric is based on input dimensions that best relate the data samples in a cluster, and (b) by pruning input connections to hidden nodes in a per node basis, using an innovative Genetic Algorithm optimization scheme. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11550907_82 en
dc.identifier.isi ISI:000232196000082 en
dc.identifier.volume 3697 LNCS en
dc.identifier.spage 521 en
dc.identifier.epage 526 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής