HEAL DSpace

Constrained shortest path computation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Terrovitis, M en
dc.contributor.author Bakiras, S en
dc.contributor.author Papadias, D en
dc.contributor.author Mouratidis, K en
dc.date.accessioned 2014-03-01T02:43:11Z
dc.date.available 2014-03-01T02:43:11Z
dc.date.issued 2005 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31279
dc.subject Data Partitioning en
dc.subject Exact Algorithm en
dc.subject Indexation en
dc.subject Optimal Path en
dc.subject Search Space en
dc.subject Spatial Database en
dc.subject Shortest Path en
dc.subject Shortest Path Problem en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Algorithms en
dc.subject.other Constraint theory en
dc.subject.other Database systems en
dc.subject.other Data-partitioning method en
dc.subject.other Eucledean distance method en
dc.subject.other Spatial databases en
dc.subject.other Sub-optimal method en
dc.subject.other Computational methods en
dc.title Constrained shortest path computation en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11535331_11 en
heal.identifier.secondary http://dx.doi.org/10.1007/11535331_11 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper proposes and solves α-autonomy and κ-stops shortest path problems in large spatial databases. Given a source s and a destination d, an α-autonomy query retrieves a sequence of data points connecting s and d, such that the distance between any two consecutive points in the path is not greater than α. A κ-stops query retrieves a sequence that contains exactly κ intermediate data points. In both cases our aim is to compute the shortest path subject to these constraints. Assuming that the dataset is indexed by a data-partitioning method, the proposed techniques initially compute a sub-optimal path by utilizing the Euclidean distance information provided by the index. The length of the retrieved path is used to prune the search space, filtering out large parts of the input dataset. In a final step, the optimal (α-autonomy or κ-stops) path is computed (using only the non-eliminated data points) by an exact algorithm. We discuss several processing methods for both problems, and evaluate their efficiency through extensive experiments. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11535331_11 en
dc.identifier.isi ISI:000231416800011 en
dc.identifier.volume 3633 en
dc.identifier.spage 181 en
dc.identifier.epage 199 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής