HEAL DSpace

Context-adaptive and user-centric facial emotion classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.date.accessioned 2014-03-01T02:43:11Z
dc.date.available 2014-03-01T02:43:11Z
dc.date.issued 2005 en
dc.identifier.issn 15224880 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31283
dc.subject Adaptive Architecture en
dc.subject Functional Analysis en
dc.subject Low Complexity en
dc.subject Process Capability en
dc.subject.other Adaptable architecture en
dc.subject.other Context environment en
dc.subject.other Facial emotions en
dc.subject.other Processing capabilities en
dc.subject.other Adaptive algorithms en
dc.subject.other Data storage equipment en
dc.subject.other Database systems en
dc.subject.other Image processing en
dc.subject.other Program processors en
dc.subject.other Real time systems en
dc.subject.other Face recognition en
dc.title Context-adaptive and user-centric facial emotion classification en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2005.1529989 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2005.1529989 en
heal.identifier.secondary 1529989 en
heal.publicationDate 2005 en
heal.abstract In this paper, we proposed a context-adaptive and user-centric emotion classification scheme of low complexity. Different people express their feelings In a different way under different circumstances (different context). Therefore, an adaptable architecture is proposed in this paper able to automatically update its performance to a particular individual (user-centric) and context environment (context-adaptive). As a result, the same expressions may lead to different emotional states in accordance to the specific environment to these feelings are expressed. The adaptation is performed using concepts derived from functional analysis. The presented adaptable architecture requires low memory and processing capabilities and thus it can be embedded in smart pervasive devices of low processing requirements. Experimental results on real-life databases illustrate the efficiency of the proposed scheme in recognizing the emotion of different people or even the same under different circumstances. © 2005 IEEE. en
heal.journalName Proceedings - International Conference on Image Processing, ICIP en
dc.identifier.doi 10.1109/ICIP.2005.1529989 en
dc.identifier.volume 2 en
dc.identifier.spage 53 en
dc.identifier.epage 56 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής