dc.contributor.author |
Afrati, F |
en |
dc.contributor.author |
Chirkova, R |
en |
dc.contributor.author |
Gupta, S |
en |
dc.contributor.author |
Loftis, C |
en |
dc.date.accessioned |
2014-03-01T02:43:12Z |
|
dc.date.available |
2014-03-01T02:43:12Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31293 |
|
dc.subject |
Indexation |
en |
dc.subject |
Materialized Views |
en |
dc.subject |
Performance Tuning |
en |
dc.subject |
Point of View |
en |
dc.subject |
Query Evaluation |
en |
dc.subject |
Query Rewriting |
en |
dc.subject |
System Architecture |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Automation |
en |
dc.subject.other |
Computer aided design |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Data-intensive systems |
en |
dc.subject.other |
Query rewriting techniques |
en |
dc.subject.other |
System architecture |
en |
dc.subject.other |
View selection techniques |
en |
dc.subject.other |
Query languages |
en |
dc.title |
Designing and using views to improve performance of aggregate queries (Extended abstract) |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11408079_48 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11408079_48 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Data-intensive systems routinely use derived data (e.g., indexes or materialized views) to improve query-evaluation performance. We present a system architecture for Query-Performance Enhancement by Tuning (QPET), which combines design and use of derived data in an end-to-end approach to automated query-performance tuning. Our focus is on a tradeoff between (1) the amount of system resources spent on designing derived data and on keeping the data up to date, and (2) the degree of the resulting improvement in query performance. From the technical point of view, the novelty that we introduce is that we combine aggregate query rewriting techniques [1,2] and view selection techniques [3] to achieve our goal. © Springer-Verlag Berlin Heidelberg 2005. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11408079_48 |
en |
dc.identifier.isi |
ISI:000229213600045 |
en |
dc.identifier.volume |
3453 |
en |
dc.identifier.spage |
548 |
en |
dc.identifier.epage |
554 |
en |