dc.contributor.author |
Spyrou, E |
en |
dc.contributor.author |
Borgne, HL |
en |
dc.contributor.author |
Mailis, T |
en |
dc.contributor.author |
Cooke, E |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
O'Connor, N |
en |
dc.date.accessioned |
2014-03-01T02:43:20Z |
|
dc.date.available |
2014-03-01T02:43:20Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31344 |
|
dc.subject |
Back Propagation |
en |
dc.subject |
Euclidean Distance |
en |
dc.subject |
Fuzzy Rules |
en |
dc.subject |
Image Classification |
en |
dc.subject |
K Nearest Neighbor |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Semantic Gap |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Imaging techniques |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Euclidean distance |
en |
dc.subject.other |
Fuzzy-ART neurofuzzy network |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
MPEG-7 visual descriptors |
en |
dc.subject.other |
Image analysis |
en |
dc.title |
Fusing MPEG-7 visual descriptors for image classification |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11550907_134 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11550907_134 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This paper proposes three content-based image classification techniques based on fusing various low-level MPEG-7 visual descriptors. Fusion is necessary as descriptors would be otherwise incompatible and inappropriate to directly include e.g. in a Euclidean distance. Three approaches are described: A ""merging"" fusion combined with an SVM classifier, a back-propagation fusion combined with a KNN classifier and a Fuzzy-ART neurofuzzy network. In the latter case, fuzzy rules can be extracted in an effort to bridge the ""semantic gap"" between the low-level descriptors and the high-level semantics of an image. All networks were evaluated using content from the repository of the aceMedia project1 and more specifically in a beach/urban scene classification problem. © Springer-Verlag Berlin Heidelberg 2005. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11550907_134 |
en |
dc.identifier.isi |
ISI:000232196000134 |
en |
dc.identifier.volume |
3697 LNCS |
en |
dc.identifier.spage |
847 |
en |
dc.identifier.epage |
852 |
en |