dc.contributor.author |
Theodorou, DN |
en |
dc.date.accessioned |
2014-03-01T02:43:21Z |
|
dc.date.available |
2014-03-01T02:43:21Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0010-4655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31356 |
|
dc.subject |
Monte Carlo simulation |
en |
dc.subject |
Multiscale modeling |
en |
dc.subject |
Physical properties of polymers |
en |
dc.subject |
Self-adhesive materials |
en |
dc.subject |
Self-consistent field theory |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Amorphous materials |
en |
dc.subject.other |
Block copolymers |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Rheology |
en |
dc.subject.other |
Thermoanalysis |
en |
dc.subject.other |
Multiscale modeling |
en |
dc.subject.other |
Physical properties of polymers |
en |
dc.subject.other |
Self-adhesive materials |
en |
dc.subject.other |
Self-consistent field theory |
en |
dc.subject.other |
Organic polymers |
en |
dc.title |
Hierarchical modeling of amorphous polymers |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.cpc.2005.03.020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cpc.2005.03.020 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The development of computational methods for predicting thermal, mechanical, and rheological properties of polymers from chemical constitution calls for hierarchical strategies, capable of addressing the broad spectra of length and time scales governing the behavior of these materials. This paper reviews two recently developed strategies that appear particularly promising: (a) use of connectivity-altering Monte Carlo algorithms for rapid equilibration of atomistic models of long-chain polymer systems, calculation of their conformational, packing and volumetric properties, and assessment of their entanglement structure; (b) self-consistent field calculations of morphology development in complex systems containing block copolymers, coupled with rubber elasticity theory for the prediction of the stress-strain behavior of these systems. How connections can be established between the atomistic, mesoscopic (entanglement network) and macroscopic (continuum) descriptions is discussed. (c) 2005 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Physics Communications |
en |
dc.identifier.doi |
10.1016/j.cpc.2005.03.020 |
en |
dc.identifier.isi |
ISI:000230528100019 |
en |
dc.identifier.volume |
169 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
82 |
en |
dc.identifier.epage |
88 |
en |