HEAL DSpace

How to place efficiently guards and paintings in an art gallery

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fragoudakis, C en
dc.contributor.author Markou, E en
dc.contributor.author Zachos, S en
dc.date.accessioned 2014-03-01T02:43:22Z
dc.date.available 2014-03-01T02:43:22Z
dc.date.issued 2005 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31359
dc.subject Approximate Algorithm en
dc.subject Art Gallery Problem en
dc.subject Computational Geometry en
dc.subject Research Paper en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Art gallery en
dc.subject.other Constant ratios en
dc.subject.other Polygon en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Boundary conditions en
dc.subject.other Decoration en
dc.subject.other Polynomials en
dc.subject.other Problem solving en
dc.subject.other Painting en
dc.title How to place efficiently guards and paintings in an art gallery en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11573036_14 en
heal.identifier.secondary http://dx.doi.org/10.1007/11573036_14 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In the art gallery problem the goal is to place guards (as few as possible) in a polygon so that a maximal area of the polygon is covered. We address here a closely related problem: how to place paintings and guards in an art gallery so that the total value of guarded paintings is a maximum. More formally, a simple polygon is given along with a set of paintings. Each painting, has a length and a value. We study how to place at the same time: i) a given number of guards on the boundary of the polygon and ii) paintings on the boundary of the polygon so that the total value of guarded paintings is maximum. We investigate this problem for a number of cases depending on: i) where the guards can be placed (vertices, edges), ii) whether the polygon has holes or not and iii) whether the goal is to oversee the placed paintings (every point of a painting is seen by at least one guard), or to watch the placed paintings (at least one point of a painting is seen by at least one guard). We prove that the problem is NP-hard in all the above cases and we present polynomial time approximation algorithms for all cases, achieving constant ratios. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11573036_14 en
dc.identifier.isi ISI:000233675500014 en
dc.identifier.volume 3746 LNCS en
dc.identifier.spage 145 en
dc.identifier.epage 154 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής