dc.contributor.author |
Papandreou, G |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:43:22Z |
|
dc.date.available |
2014-03-01T02:43:22Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
15224880 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31364 |
|
dc.subject |
Cross Validation |
en |
dc.subject |
Image Analysis |
en |
dc.subject |
image denoising |
en |
dc.subject |
Image Processing |
en |
dc.subject |
Nonlinear Diffusion |
en |
dc.subject |
Scale Space |
en |
dc.subject |
Statistical Model |
en |
dc.subject.other |
Automatic scale selection |
en |
dc.subject.other |
Image denoising |
en |
dc.subject.other |
Optimal scale selection |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Optimal systems |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Image processing |
en |
dc.title |
Image denoising in nonlinear scale-spaces: Automatic scale selection via cross-validation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2005.1529792 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2005.1529792 |
en |
heal.identifier.secondary |
1529792 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Multiscale, i.e. scale-space image analysis is a powerful framework for many image processing tasks. A fundamental issue with such scale-space techniques is the automatic selection of the most salient scale for a particular application. This paper considers optimal scale selection when nonlinear diffusion and morphological scale-spaces are utilized for image denoising. The problem is studied from a statistical model selection viewpoint and cross-validation techniques are utilized to address it in a principled way. The proposed novel algorithms do not require knowledge of the noise variance, have acceptable computational cost and are readily integrated with a wide class of scale-space inducing processes which require setting of a scale parameter. Our experiments show that this methodology leads to robust algorithms, which outperform existing scale-selection techniques for a wide range of noise types and noise levels. © 2005 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Image Processing, ICIP |
en |
dc.identifier.doi |
10.1109/ICIP.2005.1529792 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
481 |
en |
dc.identifier.epage |
484 |
en |