HEAL DSpace

Image denoising in nonlinear scale-spaces: Automatic scale selection via cross-validation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papandreou, G en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:43:22Z
dc.date.available 2014-03-01T02:43:22Z
dc.date.issued 2005 en
dc.identifier.issn 15224880 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31364
dc.subject Cross Validation en
dc.subject Image Analysis en
dc.subject image denoising en
dc.subject Image Processing en
dc.subject Nonlinear Diffusion en
dc.subject Scale Space en
dc.subject Statistical Model en
dc.subject.other Automatic scale selection en
dc.subject.other Image denoising en
dc.subject.other Optimal scale selection en
dc.subject.other Algorithms en
dc.subject.other Calculations en
dc.subject.other Nonlinear systems en
dc.subject.other Optimal systems en
dc.subject.other Statistical methods en
dc.subject.other Image processing en
dc.title Image denoising in nonlinear scale-spaces: Automatic scale selection via cross-validation en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2005.1529792 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2005.1529792 en
heal.identifier.secondary 1529792 en
heal.publicationDate 2005 en
heal.abstract Multiscale, i.e. scale-space image analysis is a powerful framework for many image processing tasks. A fundamental issue with such scale-space techniques is the automatic selection of the most salient scale for a particular application. This paper considers optimal scale selection when nonlinear diffusion and morphological scale-spaces are utilized for image denoising. The problem is studied from a statistical model selection viewpoint and cross-validation techniques are utilized to address it in a principled way. The proposed novel algorithms do not require knowledge of the noise variance, have acceptable computational cost and are readily integrated with a wide class of scale-space inducing processes which require setting of a scale parameter. Our experiments show that this methodology leads to robust algorithms, which outperform existing scale-selection techniques for a wide range of noise types and noise levels. © 2005 IEEE. en
heal.journalName Proceedings - International Conference on Image Processing, ICIP en
dc.identifier.doi 10.1109/ICIP.2005.1529792 en
dc.identifier.volume 1 en
dc.identifier.spage 481 en
dc.identifier.epage 484 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής