dc.contributor.author |
Romessis, C |
en |
dc.contributor.author |
Mathioudakis, K |
en |
dc.date.accessioned |
2014-03-01T02:43:22Z |
|
dc.date.available |
2014-03-01T02:43:22Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31366 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-27744510711&partnerID=40&md5=13035a9e10b26dc4fcea3149f5aa3f59 |
en |
dc.relation.uri |
http://www.ltt.mech.ntua.gr/paperfull/GT2005-68739.pdf |
en |
dc.subject |
Diagnostic Method |
en |
dc.subject |
Diagnostic Tool |
en |
dc.subject |
Fault Diagnosis |
en |
dc.subject |
Gas Turbine |
en |
dc.subject |
Probabilistic Neural Network |
en |
dc.subject |
Stochastic Method |
en |
dc.subject |
bayesian belief network |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Stochastic control systems |
en |
dc.subject.other |
Bayesian Belief Networks (BBN) |
en |
dc.subject.other |
Component faults |
en |
dc.subject.other |
Diagnostic problem |
en |
dc.subject.other |
Gas turbines |
en |
dc.title |
Implementation of stochastic methods for industrial gas turbine fault diagnosis |
en |
heal.type |
conferenceItem |
en |
heal.identifier.secondary |
GT2005-68739 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Implementation of stochastic diagnostic methods for diagnosis of sensor or component faults is presented. Two industrial gas turbines are considered as test cases, one twin and one single shaft arrangement. Methods based on Probabilistic Neural Networks (PNN) and Bayesian Belief Networks (BBN), are implemented. The ability for successful diagnosis is demonstrated on specific cases of sensor malfunctions, as well as on two types of compressor deterioration, fouling and variable vane mistuning. The examined diagnostic problem and the methods of PNN for sensor fault diagnosis and BBN for the diagnosis of component faults are first described. For each gas turbine case, the implementation of the diagnostic methods is shown and application to fault cases that occurred is presented. The effectiveness of the stochastic diagnostic methods demonstrates that they offer a powerful alternative diagnostic tool. Copyright © 2005 by ASME. |
en |
heal.journalName |
Proceedings of the ASME Turbo Expo |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
723 |
en |
dc.identifier.epage |
730 |
en |