HEAL DSpace

Learning ontology alignments using recursive neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chortaras, A en
dc.contributor.author Stamou, G en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:43:23Z
dc.date.available 2014-03-01T02:43:23Z
dc.date.issued 2005 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31383
dc.subject Knowledge Representation en
dc.subject Ontology Alignment en
dc.subject Recursive Neural Networks en
dc.subject Semantic Mapping en
dc.subject Semantic Web en
dc.subject Structured Data en
dc.subject Neural Network en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Information analysis en
dc.subject.other Knowledge representation en
dc.subject.other Multimedia systems en
dc.subject.other Neural networks en
dc.subject.other Semantics en
dc.subject.other World Wide Web en
dc.subject.other Multimedia information en
dc.subject.other Non-identical ontologies en
dc.subject.other Ontology alignment tools en
dc.subject.other Web machines en
dc.subject.other Computer science en
dc.title Learning ontology alignments using recursive neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11550907_128 en
heal.identifier.secondary http://dx.doi.org/10.1007/11550907_128 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The Semantic Web is based on technologies that make the content of the Web machine-understandable. In that framework, ontological knowledge representation has become an important tool for the analysis and understanding of multimedia information. Because of the distributed nature of the Semantic Web however, ontologies describing similar fields of knowledge are being developed and the data coming from similar but non-identical ontologies can be combined only if a semantic mapping between them is first established. This has lead to the development of several ontology alignment tools. We propose an automatic ontology alignment method based on the recursive neural network model that uses ontology instances to learn similarities between ontology concepts. Recursive neural networks are an extension of common neural networks, designed to process efficiently structured data. Since ontologies are a structured data representation, the model is inherently suitable for use with ontologies. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11550907_128 en
dc.identifier.isi ISI:000232196000128 en
dc.identifier.volume 3697 LNCS en
dc.identifier.spage 811 en
dc.identifier.epage 816 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής