dc.contributor.author |
Chortaras, A |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:43:23Z |
|
dc.date.available |
2014-03-01T02:43:23Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31383 |
|
dc.subject |
Knowledge Representation |
en |
dc.subject |
Ontology Alignment |
en |
dc.subject |
Recursive Neural Networks |
en |
dc.subject |
Semantic Mapping |
en |
dc.subject |
Semantic Web |
en |
dc.subject |
Structured Data |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Information analysis |
en |
dc.subject.other |
Knowledge representation |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
World Wide Web |
en |
dc.subject.other |
Multimedia information |
en |
dc.subject.other |
Non-identical ontologies |
en |
dc.subject.other |
Ontology alignment tools |
en |
dc.subject.other |
Web machines |
en |
dc.subject.other |
Computer science |
en |
dc.title |
Learning ontology alignments using recursive neural networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11550907_128 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11550907_128 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
The Semantic Web is based on technologies that make the content of the Web machine-understandable. In that framework, ontological knowledge representation has become an important tool for the analysis and understanding of multimedia information. Because of the distributed nature of the Semantic Web however, ontologies describing similar fields of knowledge are being developed and the data coming from similar but non-identical ontologies can be combined only if a semantic mapping between them is first established. This has lead to the development of several ontology alignment tools. We propose an automatic ontology alignment method based on the recursive neural network model that uses ontology instances to learn similarities between ontology concepts. Recursive neural networks are an extension of common neural networks, designed to process efficiently structured data. Since ontologies are a structured data representation, the model is inherently suitable for use with ontologies. © Springer-Verlag Berlin Heidelberg 2005. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11550907_128 |
en |
dc.identifier.isi |
ISI:000232196000128 |
en |
dc.identifier.volume |
3697 LNCS |
en |
dc.identifier.spage |
811 |
en |
dc.identifier.epage |
816 |
en |