HEAL DSpace

Mining chains of relations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Afrati, F en
dc.contributor.author Das, G en
dc.contributor.author Gionis, A en
dc.contributor.author Mannila, H en
dc.contributor.author Mielikainen, T en
dc.contributor.author Tsaparas, P en
dc.date.accessioned 2014-03-01T02:43:25Z
dc.date.available 2014-03-01T02:43:25Z
dc.date.issued 2005 en
dc.identifier.issn 15504786 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31395
dc.subject Association Rule en
dc.subject Data Mining en
dc.subject Data Mining Application en
dc.subject Satisfiability en
dc.subject.other Algorithms en
dc.subject.other Association rules en
dc.subject.other Bibliographic retrieval systems en
dc.subject.other Database systems en
dc.subject.other Problem solving en
dc.subject.other Mining chains en
dc.subject.other Relational chains en
dc.subject.other Data mining en
dc.title Mining chains of relations en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDM.2005.94 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDM.2005.94 en
heal.identifier.secondary 1565724 en
heal.publicationDate 2005 en
heal.abstract Traditional data mining applications consider the problem of mining a single relation between two attributes. For example, in a scientific bibliography database, authors are related to papers, and we may be interested in discovering association rules between authors. However, in real life, we often have multiple attributes related though chains of relations. For example, authors write papers, and papers concern one or more topics. Mining such relational chains poses additional challenges. In this paper we consider the following problem: given a chain of two relations R1 (A, P) and R2(P, T) we want to find selectors for the objects in T such that the projected relation between A and P satisfies a specific property. The motivation for our approach is that a given property might not hold on the whole dataset, but it might hold when projecting the data on a selector set. We discuss various algorithms and we examine the conditions under which the apriori technique can be used. We experimentally demonstrate the effectiveness of our methods. © 2005 IEEE. en
heal.journalName Proceedings - IEEE International Conference on Data Mining, ICDM en
dc.identifier.doi 10.1109/ICDM.2005.94 en
dc.identifier.spage 553 en
dc.identifier.epage 556 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής