dc.contributor.author |
Kollia, C |
en |
dc.contributor.author |
Patta, C |
en |
dc.contributor.author |
Vassiliou, P |
en |
dc.contributor.author |
Kasselouri, V |
en |
dc.date.accessioned |
2014-03-01T02:43:26Z |
|
dc.date.available |
2014-03-01T02:43:26Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0034-8570 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31409 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33644640283&partnerID=40&md5=384b0f986d86094683867afcdeb419e3 |
en |
dc.subject |
Composite coatings |
en |
dc.subject |
Corrosion |
en |
dc.subject |
Nickel |
en |
dc.subject |
Pulse plating |
en |
dc.subject |
TiO2 |
en |
dc.subject.classification |
Metallurgy & Metallurgical Engineering |
en |
dc.subject.other |
Composite materials |
en |
dc.subject.other |
Corrosion |
en |
dc.subject.other |
Electric conductivity |
en |
dc.subject.other |
Electrodeposition |
en |
dc.subject.other |
Nickel |
en |
dc.subject.other |
Scanning electron microscopy |
en |
dc.subject.other |
Titanium dioxide |
en |
dc.subject.other |
Corrosion resistance |
en |
dc.subject.other |
Energy dispersive spectroscopy |
en |
dc.subject.other |
Materials |
en |
dc.subject.other |
Microhardness |
en |
dc.subject.other |
Plating |
en |
dc.subject.other |
Profilometry |
en |
dc.subject.other |
Wear of materials |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Composite coatings |
en |
dc.subject.other |
Pulse plating |
en |
dc.subject.other |
TiO |
en |
dc.subject.other |
Engineering materials surfaces |
en |
dc.subject.other |
Metallic matrix |
en |
dc.subject.other |
Particle incorporation percentage |
en |
dc.subject.other |
Vickers microhardness |
en |
dc.subject.other |
Electrostatic coatings |
en |
dc.subject.other |
Coatings |
en |
dc.title |
Ni/TiO2 composite electrocoatings |
en |
heal.type |
conferenceItem |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Nickel composite coatings have been studied in order to provide increased properties on engineering materials surfaces, such as higher electrical conductivity, wear and corrosion resistance and to decrease the end product manufacturing cost by plating on cheap materials. Adding TiO2 particles in the bath during the deposition process produced composite coatings. This was tried on electrodeposition from a Watts bath by conventional DC conditions and by pulse plating. The surfaces were studied by SEM, by profilometry and by Vickers microhardness, and its structure by X-ray diffraction. The incorporation percentage of TiO2 particles in the metallic matrix was estimated by EDS analysis. Corrosion measurements of the deposits were taken by Tafel curves. The results obtained show that particle incorporation percentage is higher for the Ni/TiO2 electrodeposits produced by pulse current and the microhardness is significantly increased compared to the electrodeposits produced by DC. |
en |
heal.publisher |
CENIM |
en |
heal.journalName |
Revista de Metalurgia (Madrid) |
en |
dc.identifier.isi |
ISI:000237464800040 |
en |
dc.identifier.volume |
SPEC. VOL. |
en |
dc.identifier.spage |
227 |
en |
dc.identifier.epage |
231 |
en |