HEAL DSpace

One step ahead to multisensor data fusion for DDoS detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Siaterlis, C en
dc.contributor.author Maglaris, V en
dc.date.accessioned 2014-03-01T02:43:27Z
dc.date.available 2014-03-01T02:43:27Z
dc.date.issued 2005 en
dc.identifier.issn 0926227X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31417
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-28844473551&partnerID=40&md5=cf441dd83d7f09d2b4590dc6efe4e067 en
dc.relation.uri http://iospress.metapress.com/openurl.asp?genre=article&issn=0926-227X&volume=13&issue=5&spage=779 en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/journals/jcs/jcs13.html#SiaterlisM05 en
dc.subject Anomaly detection en
dc.subject Data fusion en
dc.subject Denial of Service attacks en
dc.subject Security en
dc.subject.other Bandwidth en
dc.subject.other Computer crime en
dc.subject.other Expert systems en
dc.subject.other Neural networks en
dc.subject.other Security of data en
dc.subject.other Telecommunication links en
dc.subject.other Telecommunication traffic en
dc.subject.other Anomaly detection en
dc.subject.other Data fusion en
dc.subject.other DDoS detection en
dc.subject.other Denial of Service attacks en
dc.subject.other Sensor data fusion en
dc.title One step ahead to multisensor data fusion for DDoS detection en
heal.type conferenceItem en
heal.publicationDate 2005 en
heal.abstract This work introduces the use of data fusion in the field of DDoS anomaly detection. We present Dempster-Shafer Theory of Evidence (D-S), the mathematical foundation for the development of a novel DDoS detection engine. Based on a data fusion paradigm, we combine evidence generated from multiple simple metrics to feed our D-S inference engine and detect attacks on a single network element (high bandwidth link). The main advantages of our approach are the modeling power of the Theory of Evidence in expressing beliefs in some hypotheses, its flexibility to handle uncertainty and ignorance and its ability to provide quantitative measurement of the belief and plausibility in our detection results. Furthermore we propose a system that can be trained (supervised learning) with minimum human effort, using in parallel expert knowledge about each metric detection ability. We evaluate our detection engine prototype through an extensive set of experiments on an operational network using real network traffic, with the use of a popular DDoS attack generator. Based on these results we discuss the performance of our D-S scheme in contrast to simple thresholds on single metrics, as well as against an alternative data fusion technique based on an Artificial Neural Network. We conclude that our data fusion is a promising approach that significantly increases the DDoS detection rate (true positives) while keeping the false positive alarm rate low. © 2005 - IOS Press and the authors. All rights reserved. en
heal.journalName Journal of Computer Security en
dc.identifier.volume 13 en
dc.identifier.issue 5 en
dc.identifier.spage 779 en
dc.identifier.epage 806 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής