HEAL DSpace

SCAPEVIEWER: Preliminary results of a landscape perception classification system based on neural network technology

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SG en
dc.contributor.author Tsouchlaraki, AL en
dc.contributor.author Cassios, C en
dc.contributor.author Nikita, KS en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T02:43:31Z
dc.date.available 2014-03-01T02:43:31Z
dc.date.issued 2005 en
dc.identifier.issn 09258574 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31448
dc.subject Classification en
dc.subject Genetic algorithm en
dc.subject Landscape perception en
dc.subject Linear discrimination method en
dc.subject Neural networks en
dc.subject Scenic beauty en
dc.subject.other artificial neural network en
dc.subject.other classification en
dc.subject.other landscape en
dc.subject.other perception en
dc.subject.other photograph en
dc.subject.other qualitative analysis en
dc.title SCAPEVIEWER: Preliminary results of a landscape perception classification system based on neural network technology en
heal.type conferenceItem en
heal.identifier.primary 10.1016/j.ecoleng.2004.12.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ecoleng.2004.12.003 en
heal.publicationDate 2005 en
heal.abstract In this paper, the implementation of a pilot computerized system for the classification of landscape images (SCAPEVIEWER) is presented. A total of 108 landscape photographs have been organized, according to the mean estimation of scenic beauty from seven experts, into three classes: indistinctive (C1), typical or common (C2), and distinctive (C3). For each of the landscape photographs, 10 indices are estimated. These indices are then fed to a classifier based on neural network (NN) technology. In order to examine whether NNs are suitable for this specific application, two different approaches have been tested and compared against a linear discrimination method (LDM) classifier. The first approach is a feed forward NN (Classic-NN), while the second approach (Hybrid-NN) is based on the Classic-NN modified by using genetic algorithms (GAs). The correct classification performances achieved by the Classic-NN and the Hybrid-NN were 87% and 84%, respectively, while the classification performance of the LDM classifier was only 68%. Although the Classic-NN achieved slightly better results than the Hybrid-NN, the latter is preferred due to its ability of index selection and automatical adjustment of internal NN parameters. The pilot system has shown the feasibility for classifying landscape photographs according to scenic beauty by means of a computerized system combining the knowledge of an expert with a NN classifier. © 2004 Elsevier B.V. All rights reserved. en
heal.journalName Ecological Engineering en
dc.identifier.doi 10.1016/j.ecoleng.2004.12.003 en
dc.identifier.volume 24 en
dc.identifier.issue 1-2 en
dc.identifier.spage 5 en
dc.identifier.epage 15 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής