dc.contributor.author |
Castells, P |
en |
dc.contributor.author |
Fernandez, M |
en |
dc.contributor.author |
Vallet, D |
en |
dc.contributor.author |
Mylonas, P |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T02:43:31Z |
|
dc.date.available |
2014-03-01T02:43:31Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31454 |
|
dc.subject |
Domain Ontology |
en |
dc.subject |
Information Retrieval |
en |
dc.subject |
User Preferences |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Adaptive systems |
en |
dc.subject.other |
Automation |
en |
dc.subject.other |
Computer systems |
en |
dc.subject.other |
Information technology |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Ontology-based retrieval systems |
en |
dc.subject.other |
Personalization frameworks |
en |
dc.subject.other |
Personalization technologies |
en |
dc.subject.other |
Semantic-based personalization techniques |
en |
dc.subject.other |
Information retrieval |
en |
dc.title |
Self-tuning personalized information retrieval in an ontology-based framework |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11575863_119 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11575863_119 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Reliability is a well-known concern in the field of personalization technologies. We propose the extension of an ontology-based retrieval system with semantic-based personalization techniques, upon which automatic mechanisms are devised that dynamically gauge the degree of personalization, so as to benefit from adaptivity but yet reduce the risk of obtrusiveness and loss of user control. On the basis of a common domain ontology KB, the personalization framework represents, captures and exploits user preferences to bias search results towards personal user interests. Upon this, the intensity of personalization is automatically increased or decreased according to an assessment of the imprecision contained in user requests and system responses before personalization is applied. © Springer-Verlag Berlin Heidelberg 2005. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11575863_119 |
en |
dc.identifier.isi |
ISI:000233744700120 |
en |
dc.identifier.volume |
3762 LNCS |
en |
dc.identifier.spage |
977 |
en |
dc.identifier.epage |
986 |
en |