HEAL DSpace

Symbolic rule extraction with a scaled conjugate gradient version of CLARION

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Falas, T en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:43:34Z
dc.date.available 2014-03-01T02:43:34Z
dc.date.issued 2005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31479
dc.subject Feed Forward Neural Network en
dc.subject Hybrid Intelligent System en
dc.subject Hybrid System en
dc.subject Learning Algorithm en
dc.subject Rule Extraction en
dc.subject Neural Network en
dc.subject Scaled Conjugate Gradient en
dc.subject.other Algorithms en
dc.subject.other Feedforward neural networks en
dc.subject.other Knowledge based systems en
dc.subject.other Learning systems en
dc.subject.other Multilayer neural networks en
dc.subject.other Performance en
dc.subject.other Problem solving en
dc.subject.other User interfaces en
dc.subject.other Conjugate gradient algorithm en
dc.subject.other Hybrid intelligent system en
dc.subject.other Multi-layer feed-forward neural network en
dc.subject.other Q-learning methodology en
dc.subject.other Intelligent structures en
dc.title Symbolic rule extraction with a scaled conjugate gradient version of CLARION en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IJCNN.2005.1555962 en
heal.identifier.secondary http://dx.doi.org/10.1109/IJCNN.2005.1555962 en
heal.identifier.secondary 1555962 en
heal.publicationDate 2005 en
heal.abstract This paper presents a hybrid intelligent system made up of two modules. The bottom sub-symbolic module is a multi-layer feed-forward neural network trained by a modified Q-learning methodology that employs the scaled conjugate gradient algorithm. The top module is a symbolic system (implemented with a neural network built on-line) where rules are extracted from the bottom module during training, in a fashion similar to the CLARION system. The two modules augment each other in an effort to obtain a better performance than both of the modules acting alone in solving a problem. The originality of this work lies in the use of the advanced scaled conjugate learning algorithm in such a hybrid system. It is expected that the use of this algorithm will provide significant improvements in the performance of the overall system and also make it less dependent on user-selected parameters. This paper emphasises the implementation details, since the system is currently under development, rather that concrete experimental results. © 2005 IEEE. en
heal.journalName Proceedings of the International Joint Conference on Neural Networks en
dc.identifier.doi 10.1109/IJCNN.2005.1555962 en
dc.identifier.volume 2 en
dc.identifier.spage 845 en
dc.identifier.epage 848 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής