dc.contributor.author |
Falas, T |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:43:34Z |
|
dc.date.available |
2014-03-01T02:43:34Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31479 |
|
dc.subject |
Feed Forward Neural Network |
en |
dc.subject |
Hybrid Intelligent System |
en |
dc.subject |
Hybrid System |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Rule Extraction |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Scaled Conjugate Gradient |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.subject.other |
Knowledge based systems |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
User interfaces |
en |
dc.subject.other |
Conjugate gradient algorithm |
en |
dc.subject.other |
Hybrid intelligent system |
en |
dc.subject.other |
Multi-layer feed-forward neural network |
en |
dc.subject.other |
Q-learning methodology |
en |
dc.subject.other |
Intelligent structures |
en |
dc.title |
Symbolic rule extraction with a scaled conjugate gradient version of CLARION |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IJCNN.2005.1555962 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IJCNN.2005.1555962 |
en |
heal.identifier.secondary |
1555962 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
This paper presents a hybrid intelligent system made up of two modules. The bottom sub-symbolic module is a multi-layer feed-forward neural network trained by a modified Q-learning methodology that employs the scaled conjugate gradient algorithm. The top module is a symbolic system (implemented with a neural network built on-line) where rules are extracted from the bottom module during training, in a fashion similar to the CLARION system. The two modules augment each other in an effort to obtain a better performance than both of the modules acting alone in solving a problem. The originality of this work lies in the use of the advanced scaled conjugate learning algorithm in such a hybrid system. It is expected that the use of this algorithm will provide significant improvements in the performance of the overall system and also make it less dependent on user-selected parameters. This paper emphasises the implementation details, since the system is currently under development, rather that concrete experimental results. © 2005 IEEE. |
en |
heal.journalName |
Proceedings of the International Joint Conference on Neural Networks |
en |
dc.identifier.doi |
10.1109/IJCNN.2005.1555962 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
845 |
en |
dc.identifier.epage |
848 |
en |