dc.contributor.author |
Artemiadis, PK |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:43:34Z |
|
dc.date.available |
2014-03-01T02:43:34Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31480 |
|
dc.subject |
Electromyographic (EMG) signal |
en |
dc.subject |
Parameter identification |
en |
dc.subject |
Robot teleoperation |
en |
dc.subject.other |
Biceps brachii |
en |
dc.subject.other |
Electromyographic signal |
en |
dc.subject.other |
EMG signal |
en |
dc.subject.other |
Human arm |
en |
dc.subject.other |
Identification techniques |
en |
dc.subject.other |
Joint angle |
en |
dc.subject.other |
Master-slave manipulator |
en |
dc.subject.other |
Parameter identification |
en |
dc.subject.other |
Position tracker |
en |
dc.subject.other |
Robot manipulator |
en |
dc.subject.other |
Robot teleoperation |
en |
dc.subject.other |
Robotic manipulators |
en |
dc.subject.other |
Tele-operations |
en |
dc.subject.other |
User-dependent |
en |
dc.subject.other |
Flexible manipulators |
en |
dc.subject.other |
Identification (control systems) |
en |
dc.subject.other |
Muscle |
en |
dc.subject.other |
Remote control |
en |
dc.subject.other |
Robot applications |
en |
dc.subject.other |
Intelligent robots |
en |
dc.title |
Teleoperation of a robot manipulator using EMG signals and a position tracker |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IROS.2005.1545509 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IROS.2005.1545509 |
en |
heal.identifier.secondary |
1545509 |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
A methodology for a robotic manipulator teleoperation is presented. The proposed method can realize a new master-slave manipulator system that uses no mechanical master controller but electromyographic (EMG) signals from the muscles of a human arm. EMG signals are acquired from biceps brachii, main responsible muscle for elbow flexion. The robot elbow is controlled using joint angle computed from EMG signal during smooth forearm motion, while the shoulder of the robot is controlled by a position tracker placed on the user's arm. Identification techniques are used to approximate the user-dependent parameters of the model used to compute the elbow angle based on EMG signals. © 2005 IEEE. |
en |
heal.journalName |
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS |
en |
dc.identifier.doi |
10.1109/IROS.2005.1545509 |
en |
dc.identifier.spage |
3480 |
en |
dc.identifier.epage |
3485 |
en |