HEAL DSpace

The BEM for nonhomogeneous bodies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T02:43:34Z
dc.date.available 2014-03-01T02:43:34Z
dc.date.issued 2005 en
dc.identifier.issn 0939-1533 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31483
dc.subject Analog equation en
dc.subject Boundary element method en
dc.subject Meshless en
dc.subject Nonhomogeneous bodies en
dc.subject Partial differential equations en
dc.subject.classification Mechanics en
dc.subject.other Boundary element method en
dc.subject.other Boundary value problems en
dc.subject.other Computer software en
dc.subject.other Differential equations en
dc.subject.other Function evaluation en
dc.subject.other Partial differential equations en
dc.subject.other Analog equation en
dc.subject.other Meshless en
dc.subject.other Nonhomogeneous bodies en
dc.subject.other Variable coefficients en
dc.subject.other Materials science en
dc.title The BEM for nonhomogeneous bodies en
heal.type conferenceItem en
heal.identifier.primary 10.1007/s00419-005-0390-9 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00419-005-0390-9 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The boundary element method (BEM) is developed for nonhomogeneous bodies. The static or steady-state response of such bodies leads to boundary value problems for partial differential equations (PDEs) of elliptic type with variable coefficients. The conventional BEM can be employed only if the fundamental solution of the governing equation is known or can be established. This is, however, out of question for differential equations with variable coefficients. The presented method uses simple, known fundamental solutions for homogeneous isotropic bodies to establish the integral equation. An additional field function is introduced, which is determined from a supplementary domain integral boundary equation. The latter is converted to a boundary integral by employing a domain meshless technique based on global approximation by radial basis function series. Then the solution is evaluated from its integral representation based on the known fundamental solution. The presented method maintains the pure boundary character of the BEM, since the discretization into elements and the integrations are limited only to the boundary. Without restricting its generality, the method is illustrated for problems described by second-order differential equations. Therefore, the employed fundamental solution is that of the Laplace equation. Several problems are studied. The obtained numerical results demonstrate the effectiveness and accuracy of the method. A significant advantage of the proposed method is that the same computer program is utilized to obtain numerical results regardless of the specific form of the governing differential operator. en
heal.publisher SPRINGER en
heal.journalName Archive of Applied Mechanics en
dc.identifier.doi 10.1007/s00419-005-0390-9 en
dc.identifier.isi ISI:000233634700008 en
dc.identifier.volume 74 en
dc.identifier.issue 11-12 en
dc.identifier.spage 780 en
dc.identifier.epage 789 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής