dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:43:48Z |
|
dc.date.available |
2014-03-01T02:43:48Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
10504729 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31511 |
|
dc.subject |
Algebraic Graph Theory |
en |
dc.subject |
Common Value |
en |
dc.subject |
Computer Simulation |
en |
dc.subject |
Control Strategy |
en |
dc.subject |
Distributed Control |
en |
dc.subject |
Formation Control |
en |
dc.subject |
multiagent system |
en |
dc.subject |
State Space |
en |
dc.subject |
Steady State |
en |
dc.subject |
Multi Agent System |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Lyapunov methods |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Distributed control strategy |
en |
dc.subject.other |
Flocking behavior |
en |
dc.subject.other |
Holonomic kinematic agents |
en |
dc.subject.other |
Lyapunov analysis |
en |
dc.subject.other |
Multi agent systems |
en |
dc.title |
A connection between formation control and flocking behavior in nonholonomic multiagent systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ROBOT.2006.1641830 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ROBOT.2006.1641830 |
en |
heal.identifier.secondary |
1641830 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper contains two main features: a provably correct distributed control strategy for convergence of multiple nonholonomic agents to a desired feasible formation configuration and a connection between formation infeasibility and flocking behavior in nonholonomic kinematic multi-agent systems. In particular, it is shown that when inter-agent formation objectives cannot occur simultaneously in the state-space then, under certain assumptions, the agents velocity vectors and orientations converge to a common value at steady state, under the same control strategy that would lead to a feasible formation. Convergence guarantees are provided in both cases using tools form algebraic graph theory and Lyapunov analysis. The results are verified through computer simulations. This is an extension of a result established in our previous work for multiple holonomic kinematic agents. © 2006 IEEE. |
en |
heal.journalName |
Proceedings - IEEE International Conference on Robotics and Automation |
en |
dc.identifier.doi |
10.1109/ROBOT.2006.1641830 |
en |
dc.identifier.volume |
2006 |
en |
dc.identifier.spage |
940 |
en |
dc.identifier.epage |
945 |
en |