HEAL DSpace

A connectionist model for weighted fuzzy programs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chortaras, A en
dc.contributor.author Stamou, G en
dc.contributor.author Stafylopatis, A en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:43:48Z
dc.date.available 2014-03-01T02:43:48Z
dc.date.issued 2006 en
dc.identifier.issn 10987576 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31512
dc.subject connectionist models en
dc.subject Fuzzy Logic Programming en
dc.subject Fuzzy Programming en
dc.subject Logic Programs en
dc.subject Neural Network en
dc.subject.other Dynamical systems en
dc.subject.other Logic programming en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Uncertain systems en
dc.subject.other Fuzzy logic programming en
dc.subject.other Herbrand model en
dc.subject.other Weighted fuzzy programs en
dc.subject.other Fuzzy logic en
dc.title A connectionist model for weighted fuzzy programs en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IJCNN.2006.247265 en
heal.identifier.secondary http://dx.doi.org/10.1109/IJCNN.2006.247265 en
heal.identifier.secondary 1716514 en
heal.publicationDate 2006 en
heal.abstract The usefulness of the results of logic programming in real-life applications is sometimes limited due to the inability of this theory to model the uncertain and dynamic character of real environments. Fuzzy logic programming has been lately considered as an important framework for handling uncertainty in logic programming systems. Still, there is a need for modelling adaptation of logic programs and the progress in this area is rather slow. In the present paper, we first extend fuzzy logic programs in a direction that brings them closer to the connectionist approach: we introduce weighted fuzzy programs, which allow the association of significance weights with the atoms that make up the body of a logic rule. The weights add expressiveness to the programs and allow the determination of the degree with which an antecedent affects the value of the rule consequent. Then, we propose a neural network implementation of weighted fuzzy programs that is capable of computing the minimal Herbrand model of a weighted fuzzy program. © 2006 IEEE. en
heal.journalName IEEE International Conference on Neural Networks - Conference Proceedings en
dc.identifier.doi 10.1109/IJCNN.2006.247265 en
dc.identifier.spage 3055 en
dc.identifier.epage 3062 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής