HEAL DSpace

A continuous adjoint method for the minimization of losses in cascade viscous flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:43:48Z
dc.date.available 2014-03-01T02:43:48Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31514
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-34250701036&partnerID=40&md5=f4d7dcd51a5b16f856c9c6a1c0eacbaa en
dc.relation.uri http://velos0.ltt.mech.ntua.gr/research/pdfs/3_079.pdf en
dc.subject Adjoint Method en
dc.subject Boundary Condition en
dc.subject Boundary Layer en
dc.subject Entropy Generation en
dc.subject Geometric Constraints en
dc.subject lagrange multiplier en
dc.subject Objective Function en
dc.subject Penalty Method en
dc.subject Viscous Flow en
dc.subject.other Field integral en
dc.subject.other Laminar cascade flows en
dc.subject.other Velocity gradient en
dc.subject.other Viscous losses en
dc.subject.other Boundary conditions en
dc.subject.other Entropy en
dc.subject.other Flow velocity en
dc.subject.other Intake systems en
dc.subject.other Lagrange multipliers en
dc.subject.other Viscous flow en
dc.subject.other Fluid dynamics en
dc.title A continuous adjoint method for the minimization of losses in cascade viscous flows en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract A continuous adjoint formulation for the minimization of viscous losses in laminar cascade flows is presented. The losses are expressed in terms of entropy generation due to the boundary layer formation and development. The minimization of the entropy difference between the inlet to and outlet from the flow domain results from the minimization of a field integral, expressed in terms of the velocity gradient. For the latter, appropriate field adjoint equations along with boundary conditions are derived, leading to sensitivity derivatives depending only upon wall boundary terms. The Lagrange multiplier penalty method is used to handle geometrical constraints related to the minimum allowed thickness of the designed cascade airfoils. For the sake of comparison, a discrete adjoint method was also programmed and used for the solution of the same problem, in which the total pressure losses, instead of the entropy increase, was used as the objective function. en
heal.journalName Collection of Technical Papers - 44th AIAA Aerospace Sciences Meeting en
dc.identifier.volume 1 en
dc.identifier.spage 613 en
dc.identifier.epage 623 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής