HEAL DSpace

A divergence from randomness framework of WordNet synsets' distribution for word sense disambiguation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fragos, K en
dc.contributor.author Skourlas, C en
dc.date.accessioned 2014-03-01T02:43:49Z
dc.date.available 2014-03-01T02:43:49Z
dc.date.issued 2006 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31518
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77954136697&partnerID=40&md5=02f55046366786cdd90a5e40a446783a en
dc.subject word sense disambiguation en
dc.subject Divergence From Randomness en
dc.subject.other Divergence from randomness en
dc.subject.other Sample data en
dc.subject.other Synsets en
dc.subject.other Word Sense Disambiguation en
dc.subject.other Wordnet en
dc.subject.other Linguistics en
dc.subject.other Ontology en
dc.subject.other Random processes en
dc.subject.other Semantic Web en
dc.subject.other Targets en
dc.subject.other Natural language processing systems en
dc.title A divergence from randomness framework of WordNet synsets' distribution for word sense disambiguation en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract We describe and experimentally evaluate a method for word sense disambiguation based on measuring the divergence from the randomness of the WordNet synsets' distribution in the context of a word that is to be disambiguated (target word). Firstly, for each word appearing in the context we collect its related synsets from WordNet using WordNet relations, and creating thus the bag of the related synsets for the context. Secondly, for each one of the senses of the target word we study the distribution of its related synsets in the context bag. Assigning a theoretical random process for these distributions and measuring the divergence from the random process we conclude the correct sense of the target word. The method was evaluated on English lexical sample data from the Senseval-2 word sense disambiguation competition, and exhibited remarkable performance compared to / better than most known WordNet relations based measures for word sense disambiguation. Moreover, the method is general and can conduct the disambiguation task assigning any random process for the distribution of the related synsets and using any measure to quantify the divergence from randomness. en
heal.journalName Proceedings of the 3rd International Workshop on Natural Language Understanding and Cognitive Science, NLUCS 2006, in Conjunction with ICEIS 2006 en
dc.identifier.spage 71 en
dc.identifier.epage 80 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής