dc.contributor.author |
Pateritsas, C |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:43:50Z |
|
dc.date.available |
2014-03-01T02:43:50Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31525 |
|
dc.subject |
bayesian classifier |
en |
dc.subject |
K Nearest Neighbor |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Memory Based Learning |
en |
dc.subject |
Self Organized Map |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Bayesian classifier |
en |
dc.subject.other |
Features classifier |
en |
dc.subject.other |
K nearest neighbors |
en |
dc.subject.other |
Memory base evaluation |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Classification (of information) |
en |
dc.subject.other |
Data storage equipment |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Self organizing maps |
en |
dc.title |
A nearest features classifier using a self-organizing map for memory base evaluation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11840930_40 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11840930_40 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Memory base learning is one of main fields in the area of machine learning. We propose a new methodology for addressing the classification task that relies on the main idea of the k - nearest neighbors algorithm, which is the most important representative of this field. In the proposed approach, given an unclassified pattern, a set of neighboring patterns is found, but not necessarily using all input feature dimensions. Also, following the concept of the naïve Bayesian classifier, we adopt the hypothesis of the independence of input features in the outcome of the classification task. The two concepts are merged in an attempt to take advantage of their good performance features. In order to further improve the performance of our approach, we propose a novel weighting scheme of the memory base. Using the self-organizing maps model during the execution of the algorithm, dynamic weights of the memory base patterns are produced. Experimental results have shown superior performance of the proposed method in comparison with the aforementioned algorithms and their variations. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11840930_40 |
en |
dc.identifier.isi |
ISI:000241475200040 |
en |
dc.identifier.volume |
4132 LNCS - II |
en |
dc.identifier.spage |
391 |
en |
dc.identifier.epage |
400 |
en |