dc.contributor.author |
Krasopoulos, PT |
en |
dc.contributor.author |
Maratos, NG |
en |
dc.date.accessioned |
2014-03-01T02:43:50Z |
|
dc.date.available |
2014-03-01T02:43:50Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
02714310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31526 |
|
dc.subject |
Barrier Function |
en |
dc.subject |
Constrained Optimization Problem |
en |
dc.subject |
Convex Optimization |
en |
dc.subject |
Exact Solution |
en |
dc.subject |
Recurrent Neural Network |
en |
dc.subject |
Interior Point |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Time Varying |
en |
dc.subject.other |
Constrained optimization |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Constrained problems |
en |
dc.subject.other |
Convex inequality |
en |
dc.subject.other |
Convex optimization |
en |
dc.subject.other |
Logarithmic barrier functions |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
A neural network for convex optimization |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISCAS.2006.1692693 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISCAS.2006.1692693 |
en |
heal.identifier.secondary |
1692693 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
A recurrent neural network for convex inequality constrained optimization problems is proposed, based on the logarithmic barrier function with a time varying barrier parameter. Strictly feasible interior point trajectories are created by the network which converge to the exact solution of the constrained problem as t → ∞. A strictly feasible initial point is required; two methods for obtaining such points are presented. Numerical results show that the method is efficient and accurate. © 2006 IEEE. |
en |
heal.journalName |
Proceedings - IEEE International Symposium on Circuits and Systems |
en |
dc.identifier.doi |
10.1109/ISCAS.2006.1692693 |
en |
dc.identifier.spage |
747 |
en |
dc.identifier.epage |
750 |
en |