HEAL DSpace

A relevance feedback approach for content based image retrieval using Gaussian Mixture models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marakakis, A en
dc.contributor.author Galatsanos, N en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:43:52Z
dc.date.available 2014-03-01T02:43:52Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31531
dc.subject Content Based Image Retrieval en
dc.subject Distance Metric en
dc.subject Gaussian Mixture en
dc.subject Gaussian Mixture Model en
dc.subject Probability Density Function en
dc.subject Relevance Feedback en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Gaussian Mixture (GM) models en
dc.subject.other Relevance feedback (RF) en
dc.subject.other Feedback control en
dc.subject.other Information retrieval en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Probabilistic logics en
dc.subject.other Probability density function en
dc.subject.other Image processing en
dc.title A relevance feedback approach for content based image retrieval using Gaussian Mixture models en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11840930_9 en
heal.identifier.secondary http://dx.doi.org/10.1007/11840930_9 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract In this paper a new relevance feedback (RF) methodology for content based image retrieval (CBIR) is presented. This methodology is based on Gaussian Mixture (GM) models for images. According to this methodology, the GM model of the query is updated in a probabilistic manner based on the GM models of the relevant images, whose relevance degree (positive or negative) is provided by the user. This methodology uses a recently proposed distance metric between probability density functions (pdfs) that can be computed in closed form for GM models. The proposed RF methodology takes advantage of the structure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11840930_9 en
dc.identifier.isi ISI:000241475200009 en
dc.identifier.volume 4132 LNCS - II en
dc.identifier.spage 84 en
dc.identifier.epage 93 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής