dc.contributor.author |
Chortaras, A |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:43:53Z |
|
dc.date.available |
2014-03-01T02:43:53Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31538 |
|
dc.subject |
connectionist models |
en |
dc.subject |
Fuzzy Logic Programming |
en |
dc.subject |
Fuzzy Programming |
en |
dc.subject |
Logic Programs |
en |
dc.subject |
Neural Network Model |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Connectionist models |
en |
dc.subject.other |
Fuzzy programs |
en |
dc.subject.other |
Logic rules |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer programming |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Logic programming |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Uncertain systems |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Adaptation of weighted fuzzy programs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11840930_5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11840930_5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Fuzzy logic programs are a useful framework for handling uncertainty in logic programming; nevertheless, there is the need for modelling adaptation of fuzzy logic programs. In this paper, we first overview weighted fuzzy programs, which bring fuzzy logic programs and connectionist models closer together by associating significance weights with the atoms of a logic rule: by exploiting the existence of weights, it is possible to construct a neural network model that reflects the structure of a weighted fuzzy program. Based on this model, we then introduce the weighted fuzzy program adaptation problem and propose an algorithm for adapting the weights of the rules of the program to fit a given dataset. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11840930_5 |
en |
dc.identifier.isi |
ISI:000241475200005 |
en |
dc.identifier.volume |
4132 LNCS - II |
en |
dc.identifier.spage |
45 |
en |
dc.identifier.epage |
54 |
en |