HEAL DSpace

Adaptive on-line neural network retraining for real life multimodal emotion recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ioannou, S en
dc.contributor.author Kessous, L en
dc.contributor.author Caridakis, G en
dc.contributor.author Karpouzis, K en
dc.contributor.author Aharonson, V en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:43:53Z
dc.date.available 2014-03-01T02:43:53Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31540
dc.subject Adaptive Neural Network en
dc.subject Emotion Recognition en
dc.subject Facial Expression en
dc.subject Neural Network Classifier en
dc.subject Neural Network en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Emotion recognition en
dc.subject.other Facial expression en
dc.subject.other Prosodic audio features en
dc.subject.other Unimodal speech en
dc.subject.other Database systems en
dc.subject.other Human computer interaction en
dc.subject.other Online systems en
dc.subject.other Real time systems en
dc.subject.other Speech recognition en
dc.subject.other Neural networks en
dc.title Adaptive on-line neural network retraining for real life multimodal emotion recognition en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11840817_9 en
heal.identifier.secondary http://dx.doi.org/10.1007/11840817_9 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Emotions play a major role in human-to-human communication enabling people to express themselves beyond the verbal domain. In recent years, important advances have been made in unimodal speech and video emotion analysis where facial expression information and prosodic audio features are treated independently. The need however to combine the two modalities in a naturalistic context, where adaptation to specific human characteristics and expressivity is required, and where single modalities alone cannot provide satisfactory evidence, is clear. Appropriate neural network classifiers are proposed for multimodal emotion analysis in this paper, in an adaptive framework, which is able to activate retraining of each modality, whenever deterioration of the respective performance is detected. Results are presented based on the IST HUMAINE NoE naturalistic database; both facial expression information and prosodic audio features are extracted from the same data and feature-based emotion analysis is performed through the proposed adaptive neural network methodology. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11840817_9 en
dc.identifier.isi ISI:000241472100009 en
dc.identifier.volume 4131 LNCS - I en
dc.identifier.spage 81 en
dc.identifier.epage 92 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής