dc.contributor.author |
Ioannou, S |
en |
dc.contributor.author |
Kessous, L |
en |
dc.contributor.author |
Caridakis, G |
en |
dc.contributor.author |
Karpouzis, K |
en |
dc.contributor.author |
Aharonson, V |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:43:53Z |
|
dc.date.available |
2014-03-01T02:43:53Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31540 |
|
dc.subject |
Adaptive Neural Network |
en |
dc.subject |
Emotion Recognition |
en |
dc.subject |
Facial Expression |
en |
dc.subject |
Neural Network Classifier |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Emotion recognition |
en |
dc.subject.other |
Facial expression |
en |
dc.subject.other |
Prosodic audio features |
en |
dc.subject.other |
Unimodal speech |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Human computer interaction |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Real time systems |
en |
dc.subject.other |
Speech recognition |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Adaptive on-line neural network retraining for real life multimodal emotion recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11840817_9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11840817_9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
Emotions play a major role in human-to-human communication enabling people to express themselves beyond the verbal domain. In recent years, important advances have been made in unimodal speech and video emotion analysis where facial expression information and prosodic audio features are treated independently. The need however to combine the two modalities in a naturalistic context, where adaptation to specific human characteristics and expressivity is required, and where single modalities alone cannot provide satisfactory evidence, is clear. Appropriate neural network classifiers are proposed for multimodal emotion analysis in this paper, in an adaptive framework, which is able to activate retraining of each modality, whenever deterioration of the respective performance is detected. Results are presented based on the IST HUMAINE NoE naturalistic database; both facial expression information and prosodic audio features are extracted from the same data and feature-based emotion analysis is performed through the proposed adaptive neural network methodology. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11840817_9 |
en |
dc.identifier.isi |
ISI:000241472100009 |
en |
dc.identifier.volume |
4131 LNCS - I |
en |
dc.identifier.spage |
81 |
en |
dc.identifier.epage |
92 |
en |