HEAL DSpace

An analysis of linear weight updating algorithms for text classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gkiokas, A en
dc.contributor.author Demiros, I en
dc.contributor.author Piperidis, S en
dc.date.accessioned 2014-03-01T02:43:54Z
dc.date.available 2014-03-01T02:43:54Z
dc.date.issued 2006 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31545
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Exponential multiplication function en
dc.subject.other Surface parameters en
dc.subject.other Text classification en
dc.subject.other Weight updating algorithms en
dc.subject.other Algorithms en
dc.subject.other Computation theory en
dc.subject.other Function evaluation en
dc.subject.other Learning systems en
dc.subject.other Parameter estimation en
dc.subject.other Problem solving en
dc.subject.other Text processing en
dc.subject.other Classification (of information) en
dc.title An analysis of linear weight updating algorithms for text classification en
heal.type conferenceItem en
heal.identifier.primary 10.1007/11752912_56 en
heal.identifier.secondary http://dx.doi.org/10.1007/11752912_56 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract This paper addresses the problem of text classification in high dimensionality spaces by applying linear weight updating classifiers that have been highly studied in the domain of machine learning. Our experimental results are based on the Winnow family of algorithms that are simple to implement and efficient in terms of computation time and storage requirements. We applied an exponential multiplication function to weight updates and we experimentally calculated the optimal values of the learning rate and the separating surface parameters. Our results are at the level of the best results that were reported on the family of linear algorithms and perform nearly as well as the top performing methodologies in the literature. © Springer-Verlag Berlin Heidelberg 2006. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/11752912_56 en
dc.identifier.isi ISI:000238053100054 en
dc.identifier.volume 3955 LNAI en
dc.identifier.spage 508 en
dc.identifier.epage 511 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής