dc.contributor.author |
Zhu, J |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.contributor.author |
Kafetzoglou, S |
en |
dc.contributor.author |
Yang, J |
en |
dc.date.accessioned |
2014-03-01T02:43:54Z |
|
dc.date.available |
2014-03-01T02:43:54Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
15301346 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31550 |
|
dc.subject |
Data Aggregation |
en |
dc.subject |
Energy Efficient |
en |
dc.subject |
Modeling and Simulation |
en |
dc.subject |
Performance Metric |
en |
dc.subject |
Quality of Service |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Sensor Network |
en |
dc.subject |
Sensor Nodes |
en |
dc.subject |
On The Fly |
en |
dc.subject |
Wireless Sensor Network |
en |
dc.subject.other |
Constrained optimization |
en |
dc.subject.other |
Data processing |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Telecommunication traffic |
en |
dc.subject.other |
Wireless sensor networks |
en |
dc.subject.other |
Data aggregation |
en |
dc.subject.other |
Distributed wireless sensor networks |
en |
dc.subject.other |
Sensor nodes |
en |
dc.subject.other |
Traffic loads |
en |
dc.subject.other |
Quality of service |
en |
dc.title |
An efficient QoS-constrained data aggregation and processing approach in distributed wireless sensor networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISCC.2006.33 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISCC.2006.33 |
en |
heal.identifier.secondary |
1691038 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper an efficient Quality of Service (QoS)-constrained data aggregation and processing approach for distributed wireless sensor networks is introduced and evaluated. The objective of the proposed approach is to aggregate data on the fly at intermediate sensor nodes in order to improve the operational efficiency and effectiveness of the sensor networks, while at the same time still satisfying the latency and measurement quality constraints. One of the key features of the proposed approach is that the task QoS requirements are taken into account to determine when and where to perform the aggregation in a distributed fashion. The performance of the proposed approach is analyzed and evaluated, through modeling and simulation, under different data aggregation scenarios and traffic loads. The impact of several design parameters and tradeoffs on various critical network and application related performance metrics, such as the energy efficiency and end-to-end latency, are also evaluated and discussed. © 2006 IEEE. |
en |
heal.journalName |
Proceedings - International Symposium on Computers and Communications |
en |
dc.identifier.doi |
10.1109/ISCC.2006.33 |
en |
dc.identifier.spage |
257 |
en |
dc.identifier.epage |
262 |
en |