dc.contributor.author |
Simou, N |
en |
dc.contributor.author |
Saathoff, G |
en |
dc.contributor.author |
Dasiopoulou, S |
en |
dc.contributor.author |
Spyrou, E |
en |
dc.contributor.author |
Voisine, N |
en |
dc.contributor.author |
Tzouvaras, V |
en |
dc.contributor.author |
Kompatsiaris, I |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Staab, S |
en |
dc.date.accessioned |
2014-03-01T02:43:55Z |
|
dc.date.available |
2014-03-01T02:43:55Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31554 |
|
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Data structures |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Software prototyping |
en |
dc.subject.other |
Generic algorithms |
en |
dc.subject.other |
Low-level visual descriptors |
en |
dc.subject.other |
Ontology infrastructure |
en |
dc.subject.other |
Visual descriptor ontology (VDO) |
en |
dc.subject.other |
Information retrieval |
en |
dc.title |
An ontology infrastructure for multimedia reasoning |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/11738695_8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/11738695_8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper, an ontology infrastucture for multimedia reasoning is presented, making it possible to combine low-level visual descriptors with domain specific knowledge and subsequently analyze multimedia content with a generic algorithm that makes use of this knowledge. More specifically, the ontology infrastructure consists of a domain-specific ontology, a visual descriptor ontology (VDO) and an upper ontology. In order to interpret a scene, a set of atom regions is generated by an initial segmentation and their descriptors are extracted. Considering all descriptors in association with the related prototype instances and relations, a genetic algorithm labels the atom regions. Finally, a constraint reasoning engine enables the final region merging and labelling into meaningful objects. © Springer-Verlag Berlin Heidelberg 2006. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/11738695_8 |
en |
dc.identifier.isi |
ISI:000238283100008 |
en |
dc.identifier.volume |
3893 LNCS |
en |
dc.identifier.spage |
51 |
en |
dc.identifier.epage |
60 |
en |