dc.contributor.author |
Popescu, I |
en |
dc.contributor.author |
Nikitopoulos, D |
en |
dc.contributor.author |
Nafornita, I |
en |
dc.contributor.author |
Constantinou, P |
en |
dc.date.accessioned |
2014-03-01T02:43:56Z |
|
dc.date.available |
2014-03-01T02:43:56Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31561 |
|
dc.subject |
Artificial neural networks |
en |
dc.subject |
Indoor channel characterization |
en |
dc.subject |
Path loss models |
en |
dc.subject |
Propagation prediction |
en |
dc.subject |
Wireless communications |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Wireless telecommunication systems |
en |
dc.subject.other |
Indoor channel characterization |
en |
dc.subject.other |
Multilayer Perceptron |
en |
dc.subject.other |
Path loss models |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
ANN prediction models for indoor environment |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/WIMOB.2006.1696368 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/WIMOB.2006.1696368 |
en |
heal.identifier.secondary |
1696368 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This work presents the results of the studies concerning the application of the feedforward neural networks to the prediction of propagation path loss in indoor environment. The proposed models consist of a Multilayer Perceptron and a Generalized Regression Neural Network trained with measurements. The results of the prediction made by the proposed neural models show a good agreement with the measurements. ©2006 IEEE. |
en |
heal.journalName |
IEEE International Conference on Wireless and Mobile Computing, Networking and Communications 2006, WiMob 2006 |
en |
dc.identifier.doi |
10.1109/WIMOB.2006.1696368 |
en |
dc.identifier.spage |
366 |
en |
dc.identifier.epage |
371 |
en |