dc.contributor.author |
Popescu, I |
en |
dc.contributor.author |
Nikitopoulos, D |
en |
dc.contributor.author |
Constantinou, P |
en |
dc.contributor.author |
Nafornita, I |
en |
dc.date.accessioned |
2014-03-01T02:43:57Z |
|
dc.date.available |
2014-03-01T02:43:57Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31562 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Error Correction Model |
en |
dc.subject |
Path Loss |
en |
dc.subject |
Prediction Model |
en |
dc.subject |
Root Mean Square Error |
en |
dc.subject |
Standard Deviation |
en |
dc.subject |
Theoretical Model |
en |
dc.subject |
Mean Error |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Neural Network Model |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Computer networks |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Error correction |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Metropolitan area networks |
en |
dc.subject.other |
Network protocols |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Vegetation |
en |
dc.subject.other |
Wireless networks |
en |
dc.subject.other |
Artificial Neural Network (ANN) models |
en |
dc.subject.other |
Artificial neural network (ANNs) |
en |
dc.subject.other |
error correction models |
en |
dc.subject.other |
Feed forward (FF) |
en |
dc.subject.other |
International symposium |
en |
dc.subject.other |
Mean error (ME) |
en |
dc.subject.other |
Mobile radio communications |
en |
dc.subject.other |
Neural network (NN) models |
en |
dc.subject.other |
Outdoor environments |
en |
dc.subject.other |
Path loss (PL) |
en |
dc.subject.other |
prediction modeling |
en |
dc.subject.other |
Propagation paths |
en |
dc.subject.other |
Root mean-square error (RMSE) |
en |
dc.subject.other |
Standard deviation (STD) |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
ANN prediction models for outdoor environment |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/PIMRC.2006.254270 |
en |
heal.identifier.secondary |
4022648 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/PIMRC.2006.254270 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This paper presents the results of our studies concerning the applications of feedforward artificial neural networks to the propagation path loss prediction in outdoor environment. An error correction model is proposed, based on the combination between a theoretical model and a neural network. The performances of the proposed artificial neural network models are compared to the measured path loss values, based on the absolute mean error, standard deviation and root mean square error. Also, the proposed neural network models are compared to each other and to the COST 231-Walfisch-Ikegami. © 2006 IEEE. |
en |
heal.journalName |
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC |
en |
dc.identifier.doi |
10.1109/PIMRC.2006.254270 |
en |